Chapter Seven

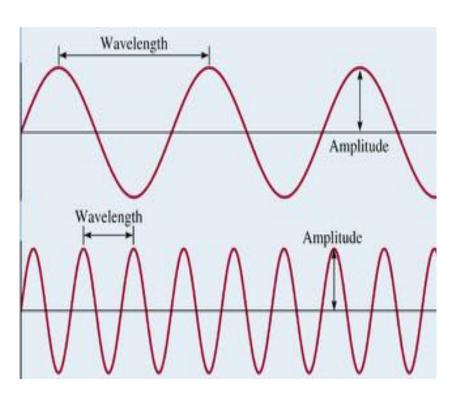
The Electronic Structure of Atoms

Wave Theory

Wave

- Repeating disturbance spreading out from a defined origin
- Characterized by wavelength, frequency and amplitude

Wavelength (λ)

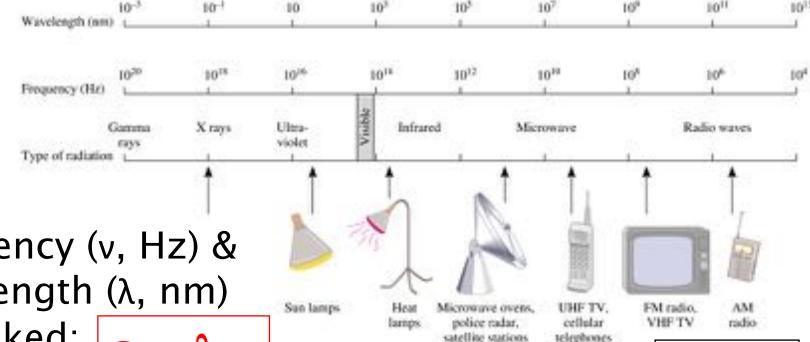

- Distance between identical pts
- Units some form of meters

Frequency (v)

- Number of waves that pass through a point in 1 second
- Units of cycles/sec or Hz

Amplitude

- Height of wave from center point
- Intensity of wave



Electric field component

Electromagnetic Radiation

Electromagnetic Radiation

- Emission/transmission of energy
- In form of waves
- Has electrical & magnetic components / Magnetic field component
- Travels at the speed of light (c= 3.00 x 108 m/s)

Frequency (v, Hz) & wavelength (λ, nm) are linked:

$$c = \lambda v$$

Using the relationship $c = \lambda v$: What is the wavelength of an FM-radiowave with a 94.9 MHz frequency?

Max Planck's Quantum Theory

Studied energy emitted by objects

 Amount of energy emitted was directly related to wavelength at which energy was emitted

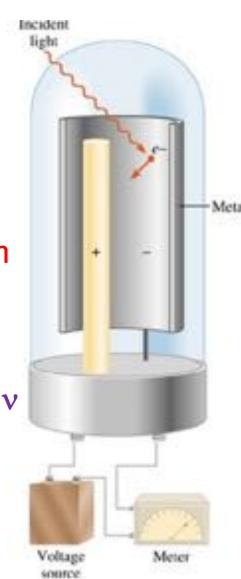
Theory: Energy must be in discrete amounts.

- Amounts were defined by λ (& ν they are related!) $E = h\nu = hc/\lambda$
- Can have multiples of these discrete amounts E = hv, E = 2hv, E = 3hv ...
- $h = Plank's constant = 6.626 \times 10^{-34} J s$

Called the smallest amount of energy a Quantum.

Didn't know why, but math worked over entire spectrum

Einstein and the Photoelectric Effect


Experiment to prove why E = hv

- Full spectrum of light hits metal surface
- Energy transferred to electrons in metal
- Electrons break free and escape to anode
- Flow of electrons recorded with voltmeter
- Light energy must be at or above a certain frequency to dislodge electrons

Conclusions:

- Light energy has wave properties: E = hv &
- Light energy has particle properties

Particles of light were later called "photons"

Using $E = hv (h = 6.626 \times 10^{-34} Js)$

What is the energy of a radiowave with a frequency of 94.9 MHz? A: $6.29 \times 10^{-26} \text{J}$

What wavelength has an energy of 1.00×10^{-20} J?

A: 1.99 x 10⁻⁵ m Or 19.9 μm

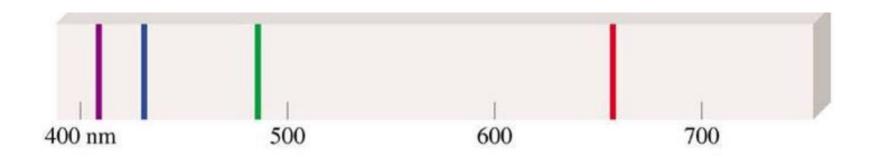
Using $E = hv (h = 6.626 \times 10^{-34} Js)$

What is the energy per photon and per mole of photons of violet light, with a wavelength of 415 nm?

A: $4.79 \times 10^{-19} \text{ J/photon}$

A: 2.88 x 10⁵ J/mol

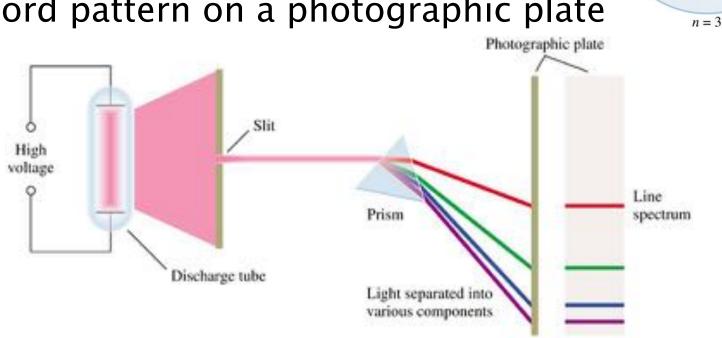
Continuous vs. Line Spectra


Continuous spectrum:

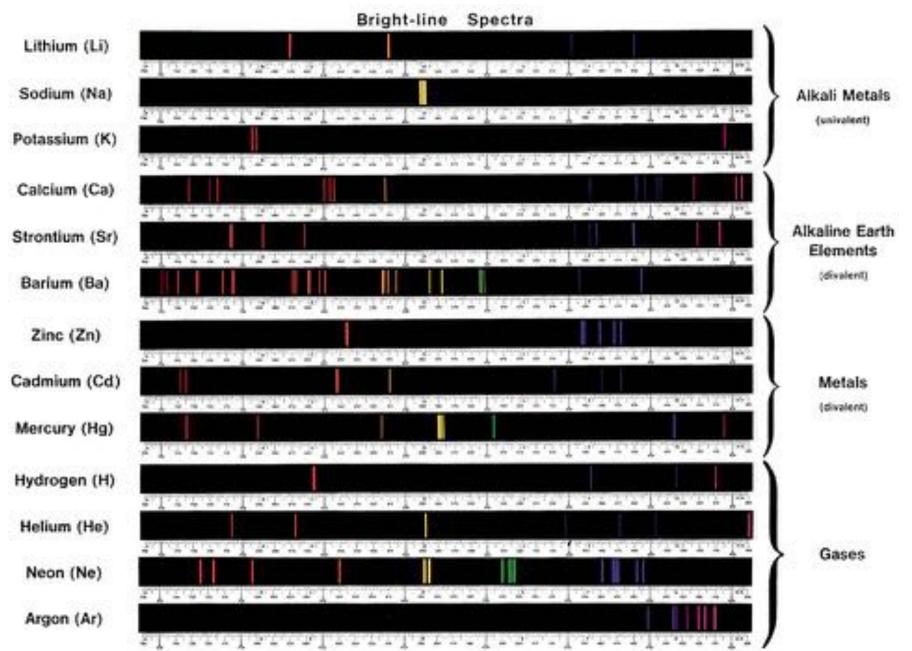
- Occurs when all visible light is present: white light

Line Spectrum

- Occurs when light is produced through an element
- Pattern of lines is characteristic of the element
- Can be used for identification of elements


n = 1

Bohr's Theory of the Hydrogen Atom


Emission Spectra: Pattern of radiation that is emitted when photons are removed from a substance.

Procedure

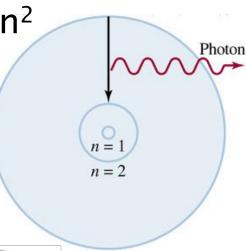
- Add energy to a substance
- Photons are emitted as a beam of light
- Separate wavelengths through a prism
- Record pattern on a photographic plate

Elemental Line Spectra

Bohr's Hydrogen Atom

Niels Bohr (1913): Electron energy (E_n) was quantized

- Only certain specified values allowed
- Stable levels called energy levels
- Photon absorbed/released when electron moves from 1 level to another


The energy of each stable orbit: $E_n = -R_H/n^2$

- *n* is the quantum number of the level
- *n* is always an integer, 1,2,3,...etc.

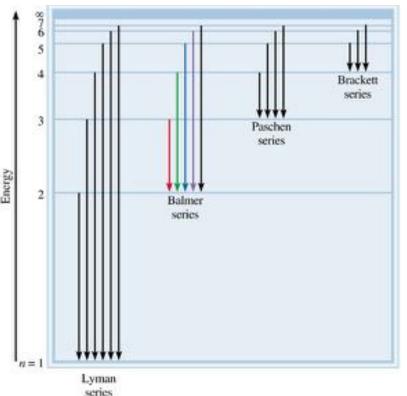
Proportionality constant R_H

- Rydberg constant
- $R_H = 2.18 \times 10^{-18} J$

Leads to orbit description of atoms

n = 3

Energy Level Calculations


All calculations done by comparing energy levels

Electron moves between levels

• E =
$$-R_H (1/n_f^2 - 1/n_i^2)$$

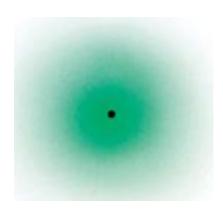
Energy emitted or absorbed

- High to low level:
 - energy released (-)
- Low to high level:
 - energy absorbed (+)

Ground state: An e-'s lowest possible energy level

Excited state: All other levels


Calculate the wavelength of the electron shift from n = 4 to n = 2. Is light emitted or absorbed?


$$E = -R_H \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$$
 $R_H = 2.18 \times 10^{-18} \text{ J}$

A: $\lambda = 486$ nm Visible blue green light is emitted (neg E value)

Modern View of the Atom: Quantum Mechanics – a very brief intro

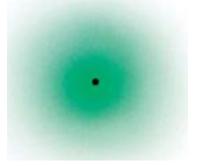
- (Nucleus in center, protons & neutrons in nucleus)
- Electrons outside nucleus
 - located in "cloud" surrounding the nucleus
 - likely location based on probability functions
 - quantum numbers used to describe probable location

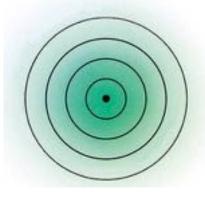
$$i\hbar\frac{\partial\Psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2\Psi + [V_1(x) + iV_2(x)]\Psi$$

Quantum Numbers and Atomic Orbitals

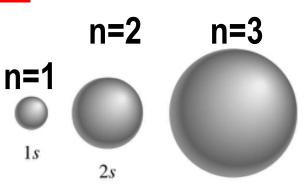
Atomic orbital

- A region in space with a high probability of finding an electron.
- Identified by 4 quantum numbers.


4 Quantum Numbers (think of it as a dorm address)


	1.	Principal	quantum	number	(n):	Building
--	----	-----------	---------	--------	------	----------

- 2. Angular momentum quantum number (1) Floor
- 3. Magnetic quantum number (m_l) Room #
- 4. Electron spin quantum number (m_s) Bed


The Principal Quantum Number (n)

- Restricted to the positive integers: 1, 2, 3, 4, 5, 6, 7
- The shell or energy level of the orbital

- Indicates the size of the orbital
 - max distance e can travel from nucleus
- Integers correspond to <u>row numbers</u> in Periodic Table
 - row an element is in tells you the highest energy level in the ground state

The Angular Momentum Quantum Number (1)

- Indicates orbital shape
 - Designation: s, p, d or f

<u>l</u> evel	0	1	2	3
Name	S	р	d	f

- Designates the subshell
 - Values range from 0 to n-1
 - 0-6 theoretically, but realistically 0-3
 - Give rise to "Blocks" in periodic table

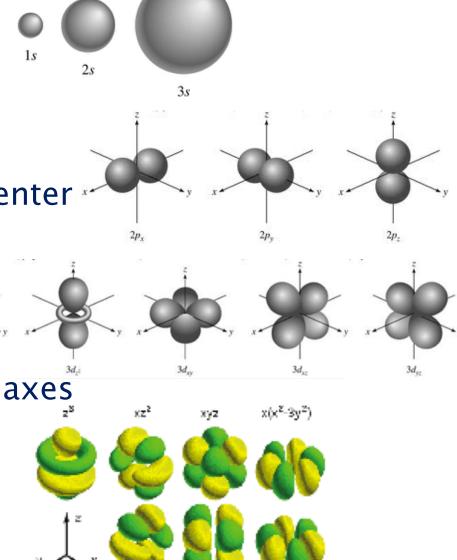
Energy Level (n)	Math	Allowed <i>l</i> values	Orbitals
1	1-1 = 0	0	s only
2	2-1 = 1	0, 1	s & p
3	3-1 = 2	0, 1, 2	s, p, & d

The Magnetic Quantum Number (m_l) :

Determines the orientation in space of the orbitals

- "orientation" refers to proximity to axes (x, y, z)
- Integers from ℓ to + ℓ

Determines the <u>number</u> of orbitals in a subshell


• The number of possible values for $m_{\ell} = 2\ell + 1$

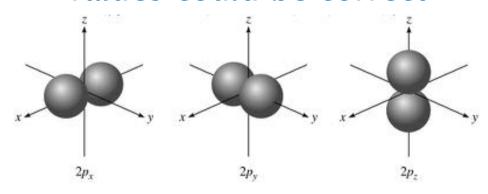
Orbital	ℓ value	Allowed m _ℓ values	Number of Orbitals per Energy Level
S	0	0	1
р	1	-1, 0, 1	3
d	2	-2, -1, 0, 1, 2	5
f	3	-3, -2, -1, 0, 1, 2, 3	7

Orbital Shapes = \ell quantum number

lanl.gov

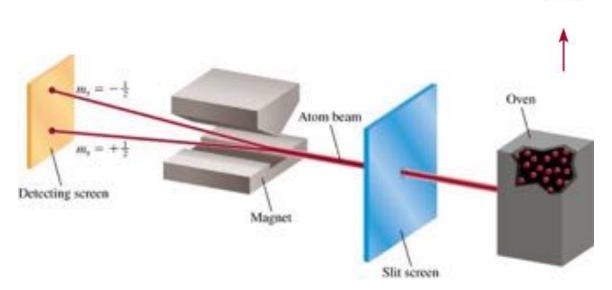
- $\ell = 0$: s orbitals
 - Spherical
 - **One** per energy level
- $\ell = 1: p$ orbitals
 - 2 teardrops joined at center
 - Three per energy level
- $\ell = 2$: d orbitals
 - Most are like two
 p orbitals along different axes
 - 5 per energy level
- $\ell = 3$: f orbitals.
 - Complicated shapes
 - 7 per energy level

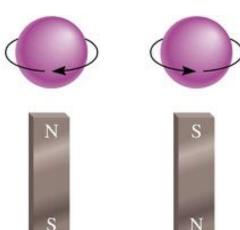
Orbitals with same n & \ell values are "degenerate"


degenerate = same energy

(Note: In some cases there are slight energy differences)

Possible quantum numbers for an electron in a 3p orbital:


$$n=3$$
 ℓ can be 0 to 3-1 (0, 1, 2) BUT if it is a p orbital $\ell=1$ m_{ℓ} can be $+\ell$ to $-\ell=-1$, 0, $+1$


Since the 3p orbitals are degenerate, any of the three m_{\ell} values could be correct

Electron Spin Quantum Number (m_s)

- A magnetic field is induced by the moving electric charge of an electron as it spins
 - Opposite spins cancel one another
 - No net magnetic field for the pair
 - Allows 2 electrons to occupy 1 orbital
 - Unpaired e lead to magnetism
- Two possible values: +1/2 and -1/2

Quantum Numbers Summary

TABLE 7.2		Relation Between Quantum Numbers and Atomic Orbitals			
n	e	m _e	Number of Orbitals	Atomic Orbital Designations	
1	0	0	1	1.5	
2	0	0	1	2s	
	1	-1, 0, 1	3	$2p_x$, $2p_y$, $2p_z$	
3	0	0	1	3.5	
	1	-1, 0, 1	3	$3p_x$, $3p_y$, $3p_z$	
	2	-2, -1, 0, 1, 2	5	$3d_{xy}$, $3d_{yz}$, $3d_{xz}$,	
				$3d_{xy}$, $3d_{yz}$, $3d_{xz}$, $3d_{xz}$, $3d_{x^2-y^2}$, $3d_{z^2}$	
*	100	7.5	98		
		1	1		

Electron Configuration: Finding a home for each electron

The energy of an electron is defined by both n & \ell

- Principle shells (size)
 - n = 1,2, 3, 4 or 5
- Subshells (shape)
 - ℓ = 0, 1, 2, or 3
 - n determines number of subshells
 - s, p, d, f orbitals
 - Shielding impacts relative energies

Many-electron atom (f subshell not shown) 1s -Hydrogen Atom $(1e^{-})$

Rules & Principles Governing e- Configurations

Pauli Exclusion Principle:

- No 2 e- in an atom can have the same set of 4 quantum #s
 - If in the same orbital, e⁻ must have opposite spins 11 12 15 25

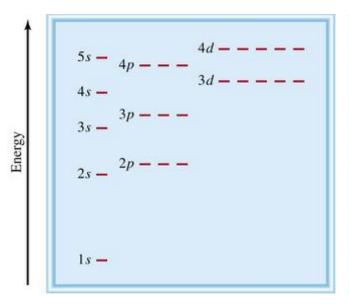
Hund's rule:

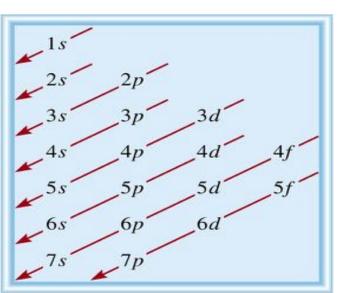
- Electrons in the same subshell occupy degenerate orbitals singly, before pairing
 - Degenerate = same energy $\frac{1 \downarrow 1 \downarrow 1}{1s \ 2s \ 2p \ 2p} \frac{1}{2p}$

Ex: Oxygen, O Z = 8

The Aufbau Principle:

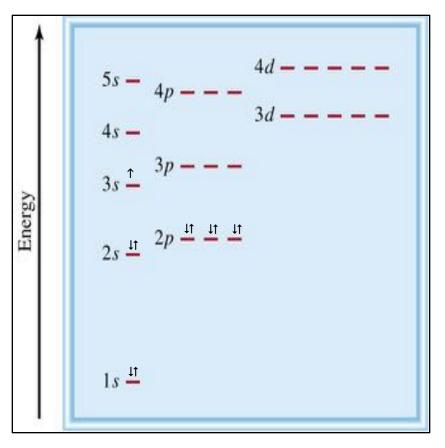
- In general, each successive electron added to an atom occupies the lowest energy orbital available
 - There are some exceptions


$$(Z = 1) H 1s^1$$


$$(Z = 2) He 1s^2$$

$$(Z = 3) Li 1s^22s^1$$

Orbital Filling in Multi-electron Atoms


- Fill low to high energy
- 2 electrons per orbital
- Shielding impacts the energy of orbitals
- Use chart to account for overlap of n values
 1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s
- Format: spdf or orbital notation
- Ends when a home is found for each electron

Electron Configuration con't

- Defines the orbital ("home") for each electron
- # electrons = atomic number (Z) of atom (if neutral)
 - Max 2 electrons per orbital

Orbital Diagrams

- Energy increases from bottom to top
 - Higher energy levels at top
- Boxes or lines represent orbitals
 - # lines at one level =# degenerate orbitals
- Arrows (↓↑) represent e⁻
- 2 e⁻ allowed per orbital
 - one arrow up & one down to show the different spins

Formats for Electron Configurations

spdf Notation

- Front number = energy level
- Letter = type of orbital (s, p, d, or f)
 - Degenerate orbitals are combined together
- Superscript = # electrons in that type of orbital
 - Degenerate orbitals are combined, so the superscript can be more than 2 if it is a p, d, or f orbital (p max 6, d max 10, f max 14)

Examples:

Ne:
$$Z = 10$$

 $1s^22s^22p^6$

Na:
$$Z = 11$$

 $1s^22s^22p^63s^1$

Orbital Notation

- Number = energy level
- Letter = type of orbital
 - Degenerate orbitals are NOT combined
- Arrows = electrons
 - Put one e⁻ in each degenerate orbital before pairing
 - If 2 e⁻ in one orbital, one arrow must be up, the other down

Example:

C:
$$Z = 6$$

Writing Electron Configurations

Sulfur:

Vanadium:

Writing Electron Configurations for Ions

Remove Electrons from Highest Energy Level First

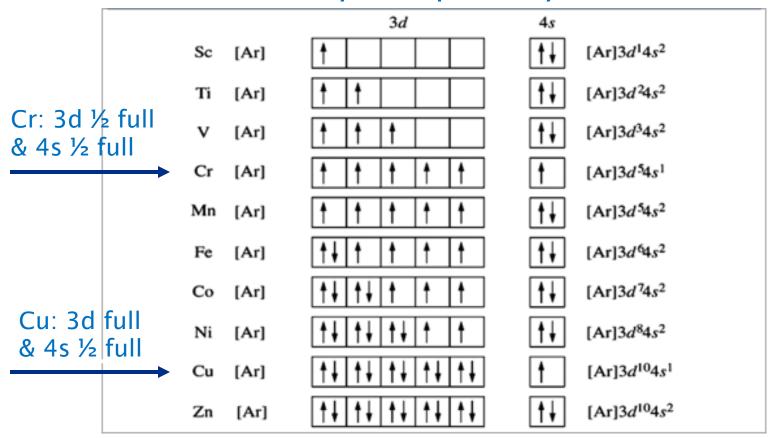
Magnesium ion (Mg²⁺):

Fluorine ion (F-):

Manganese (II) ion (Mn²⁺):

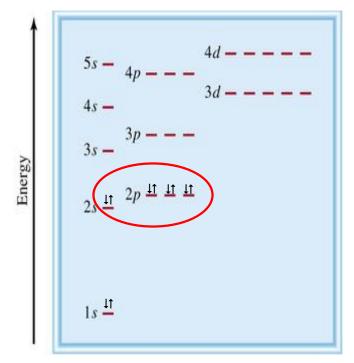
Noble Gas Configuration

- Abbreviation of Electron Configuration (ex: Na: [Ne]3s1)
- Noble gas symbol replaces the portion of the e⁻ config. that is identical to the e⁻ config. of the noble gas.
- Always use the largest noble gas that is smaller than the element
- Can use for either spdf or orbital notation
- ex: Arsenic regular configuration: 1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p³

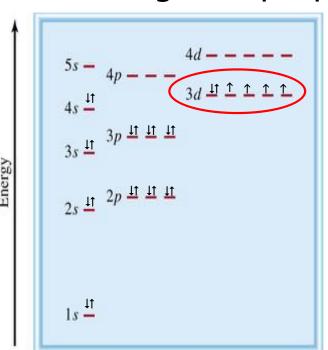

• ex: Strontium regular configuration: 1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁶5s²

Exceptions To The Aufbau Principle

Half filled & filled subshells provide additional stability Cr and Cu ½ fill/fill their 3d shell before the 4s shell.


Elements in same columns as Cr & Cu behave in same way. Similar behavior seen in p block.

Cr & Cu are the only exceptions you need to know.


Magnetism in Multi-electron Atoms

- +1/2 & -1/2 spins will cancel if electrons paired
- No magnetic properties without spin present
 - # unpaired electrons proportional to magnetic properties

Diamagnetic

All electrons paired Ne: 1s²2s²2p⁶

Paramagnetic

At least 1 unpaired electron Fe: 1s²2s²2p⁶3s²3p⁶4s²3d⁶

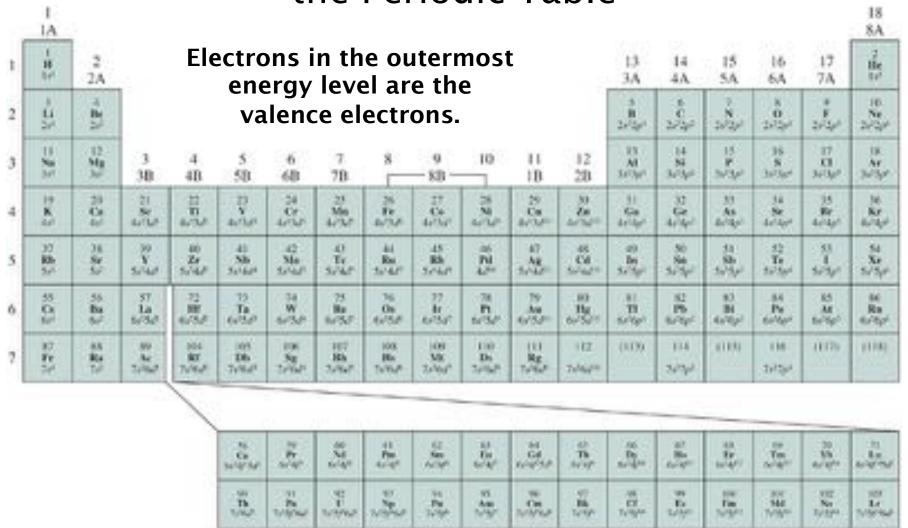
Quantum Numbers, Electron Configuration, & the Periodic Table

- Principle quantum number, n
 - Row number of periodic table, values of 1-7
- Angular momentum quantum number, l
 - Specific area of periodic table, spdf "blocks"
- Can follow the periodic table to fill e configuration
- Can use location on Periodic Table to determine where e⁻ configuration will end

ls	12000		1s
2s			2 <i>p</i>
3s		F-	3p
4s	3d		4p
5s	4d		5p
6s	5d		6p
7s	6d		7p

4f 5f A possible set of quantum numbers for the last electron added to complete an atom of selenium would be:

n:


l:

 m_l :

m_s:

Electronic Configurations and the Periodic Table

Add 1 electron for each square (ie element) in the Periodic Table

