Chapter Six

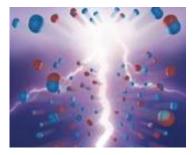
Energy Relationships in Chemical Reactions

Energy (U): Capacity to Do Work

Some types of energy:

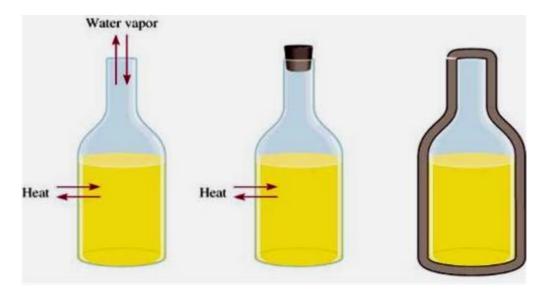
- · Radiant
 - Energy from the sun
- \cdot Nuclear
 - Energy stored in the nucleus of an atom

\cdot Thermal


- Energy associated with temperature
- Type of <u>kinetic energy</u>: due to molecular movement
- · Chemical
 - Energy stored in chemical bonds
 - Type of <u>potential energy</u>: due to position of an object

 $= kg m^2 / s^2$

 $= kg m^2 s^{-2}$



Thermochemistry Study of heat change in chemical reactions System: The part of the universe being studied Open: Energy & matter exchange with surroundings Closed: Only energy exchange with surroundings Isolated: No energy or matter exchange - rare

Surroundings: Part of the universe not being studied

Heat Transfer in a System

Heat (q): Transfer of energy due to temp. difference

Exothermic Reaction: System gives off heat (Exiting)

Ex: Methane Burning: CH_4 + O_2 \rightarrow CO_2 + H_2

Bonds stronger in $CO_2 + H_2O$ than in $CH_4 + O_2$

- Energy is absorbed when bonds break & released when bonds form
- In this case more energy released than absorbed
- Heat goes from system to surroundings

Endothermic Reaction: System gains heat (Entering) Ex: Ice Melting: $H_2O(s) \rightarrow H_2O(l)$

- Need energy to disrupt attractions between H₂O molecules
- Heat goes from surroundings into the system

4

Thermodynamics – Study of the Conversions Between Heat & Energy State of a system:

- Describes specific conditions/macroscopic properties
- Thermo involves measurement of these properties
 ex: Potential energy of ball at the top of the mountain

State functions:

Δ = change

- Properties defined by Δ_{final} Δ_{initial} values only
 - \rightarrow process doesn't matter
- Composition, temp., pressure, energy, volume ex: Height of mountain

Path functions:

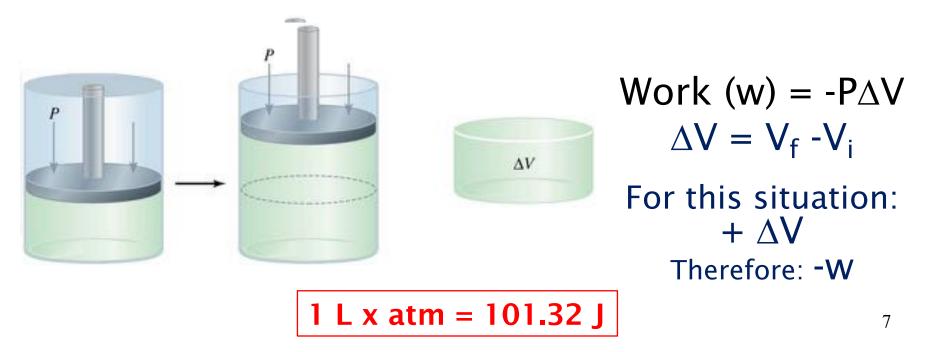
- Δ_{final} Δ_{initial} values vary by process
- Heat, work: interdependent variables ex: # steps taken, Time to top, energy per step, etc.

First Law of Thermodynamics Energy can be converted from 1 form to another but cannot be created or destroyed $\Delta U_{system} = U_{final} - U_{initial}$

Internal Energy of System: $U_{system} = U_{kinetic} + U_{potential}$

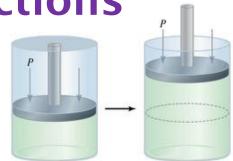
Kinetic energy: Amount of molecular motion Associated with temperature

Potential energy: Energy stored in bonds Strength of chemical bonds


When studying a reaction, cannot separate kinetic & potential energy – measure total energy instead

For chemical reactions: $\Delta U_{reaction} = U_{products} - U_{reactants}$

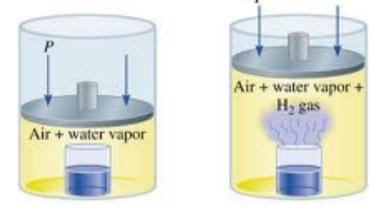
Work and Heat


Energy transfer - caused by changes in heat & work in a system $\Delta U_{system} = \mathbf{q} + \mathbf{w}$ $Work (\mathbf{w}) = force \ \mathbf{x} \ distance = -\mathbf{P} \Delta \mathbf{V}$

Negative work (-w): System loses energy to surroundings Positive work (+w): System gains energy from surroundings

Work and Heat as Path Functions

A gas expands in volume from 2.000 L to 4.000 L at STP. 350.0 J of energy are needed to maintain the new conditions.



a. Calculate work (J) done against a vacuum & against a pressure of 1 atm. (A = 0.000J, -202.6J)
 *Note that work is reported in J, not L x atm.

b. Calculate the heat required for each system. (A = 350.0 J; 552.6 J) Enthalpy of Chemical Reactions: Pressure/Volume Relationships with ∆U For systems at constant pressure (usually ~1atm):

 $\Delta U = q + w = q_p - P\Delta V$

w: Takes work to expand system against surroundings.

Enthalpy: (H) Experimentally measured & tabulated
Can think of as energy of a reaction

At constant pressure: $\Delta H = \Delta U + P \Delta V$ Assume negligible volume change: $\Delta H = \Delta U = q_p$ There will be slight differences between ΔH and ΔU Why is there an enthalpy change during chemical reactions?

Theoretical Calculation: $\Delta H = E_{in} - E_{out}^{(Chapter 9)}$

C-C Bond = 80 kcal/mole

C-H Bond = 100 kcal/mole

C-O Bond = 90 kcal/mole

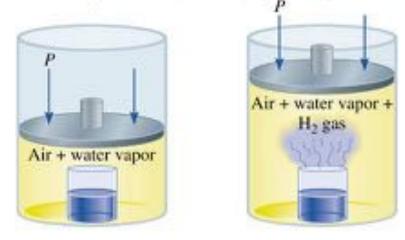
O=O Bond = 120 kcal/mole O-H Bond = 110 kcal/mole

C=O Bond = 180 kcal/mole

 $E_{in}:$ 1 C-C bond x 80 kcal/mol = 80 kcal/mol 5 C-H bonds x 100 kcal/mol = 500 kcal/mol 1 C-O bond x 90 kcal/mol = 90 kcal/mol 1 O-H bond x 110 kcal/mol = 110 kcal/mol 3 O=O bond x 120 kcal/mol = 360 kcal/mol

 E_{out} : 2x2 C=O bonds x 180 kcal/mol = 720 kcal/mol 3x2 O-H bonds x 110 kcal/mol = 660 kcal/mol

```
1140 kcal/mol
```


 $\Delta H = E_{in} - E_{out}$ = 1140 kcal/mol - 1380 kcal/mol = -240 kcal/mol

¹³⁸⁰ kcal/mol

Real Differences between Δ **U** and Δ **H** (Volume Changes)

 $\Delta H \text{ measured experimentally as heat} \\ 2Na(s) + 2H_2O(I) \rightarrow 2NaOH(aq) + H_2(g) \quad \Delta H=-367.5 \text{ kJ/mol}$

Volume change of H₂ gas V=nRT/P T= 298K, P=1.0atm, n=1.0mol H₂ V= 24.5L

- $\Delta \mathbf{U} = \Delta \mathbf{H} \mathbf{P} \underline{\Delta \mathbf{V}}$
 - $\Delta H = -367.5 kJ$

 $P \Delta V = 1.0$ atm x 24.5L = 24.5Latm x 0.101kJ/Latm = 2.5kJ $\Delta U = -367.5$ kJ -2.5kJ= 370kJ

Difference between ΔH and ΔU is only 2.5kJ ~0.7% difference considered negligible

Enthalpy of Reaction ($\Delta H = q_{rxn}/mol$)

Amount of heat exchanged between system and surroundings during a chemical reaction $\Delta H_{reaction} = H_{products} - H_{reactants}$

Exothermic Reactions

- Temperature increases in an isolated system.
- Heat released to surroundings is treated as a product
- Δ H is negative

 $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g) + 197.8kJ$ $\Delta H = -197.8kJ$

Endothermic Reaction

- Temperature decreases in an isolated system.
- Heat absorbed by system is treated as a reactant
- Δ H is positive

197.8kJ + 2SO₃→2SO₂ (g) + O₂(g) Δ H = +197.8kJ

State function: Independent of path 12

Rules for Working with Heat and Enthalpy

1. Make same changes to enthalpy as to # moles If decrease or increase reactants and products, do the same for ΔH

 $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$ $\Delta H = -197.8kJ$

 $1SO_2(g) + 1/2O_2(g) \rightarrow 1SO_3(g)$ $\Delta H = -197.8kJ/2 = -98.9kJ$

Note: Write ΔH with units that match mole ratio in equation $\Delta H = -98.9 \text{ kJ} / \text{mol SO}_3(g)$

2. Reverse the reaction, reverse sign of ΔH $2SO_3 \rightarrow 2SO_2(g) + O_2(g)$ $\Delta H = +197.8kJ$

These rules will allow you to calculate the ΔH for any amount of product or reactant

Calculate how much heat is required to decompose 15.0g NO₂(g) according to this reaction: $2NO(g) + O_2(g) \rightarrow 2NO_2(g) \quad \Delta H = -114 \text{ kJ}$ Info Provided:

Calculate molar mass of NO₂ - convert mass to moles NO₂.

Use coefficient & moles NO₂ present to find Δ H for 15.0 g.

A = +18.6 kJ ¹⁴

Calculating Δ **H Via Experiment: Calorimetry**

- Calorimetry: Measurement of heat changes
- Calorimeter: Device to measure heat (ΔT) produced by a chemical reaction
 - $\Delta T = T_{final} T_{initial}$
 - Units: generally °C

Specific Heat (s): Heat needed to raise T of 1 gram by 1°C.

- $s = q/(m \times \Delta T)$ $s_{water} = 4.184 J/g^{\circ}C$
- Units: J/g°C or cal/g°C = 1 cal/g°C

Heat capacity (C): Quantity of heat needed to raise T by 1°C

- C = m x s
- Units: J/°C or J/K

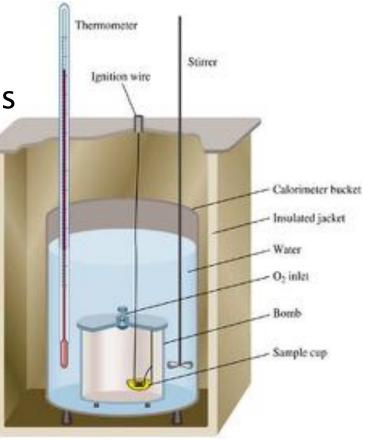
Heat of Reaction (q_{rxn})

- $q = m \times s \times \Delta T$ or $q = C \Delta T$
- Units: J

Commonly Used Specific Heats

Substance	Specific Heat (J/g · °C)	
AI	0.900	
Au	0.129	
C (graphite)	0.720	
C (diamond)	0.502	
Cu	0.385	
Fe	0.444	
Hg	0.139	
H ₂ O	4.184	
C2H5OH (ethanol)	2.46	

Calorimetry Experiments


During the experiment, heat is transferred from the reaction (system) to the water (surroundings)

 $-\mathbf{q}_{rxn} = \mathbf{q}_{H2O}$

1. Measure ΔT of water

 $q_{H2O} = m_{H2O} \times s_{H2O} \times \Delta T_{H2O}$

- 2. Use q_{H2O} to find system variables $q_{H2O} = -q_{rxn}$ $q_{rxn} = m_{sys} \times s_{sys} \times \Delta T_{sys}$
- Always have 2 sets of variables! 1 for water (surroundings) 1 for reaction (system)
- Make 2 columns of variables Reaction: s, m, T_{initial}, T_{final} Water: s, m, T_{initial}, T_{final}

A 30.0g sample of metal is heated to 100.0°C by placing it in a boiling water bath. The metal is removed from the boiling water, and placed in 25.0g of water at 22.0°C. The final temp was 27.6°C, what is the specific heat of the metal? $S_{H2O} = 4.18 \text{ J/g}^{\circ}\text{C}$

What is your equation?

What info is provided?

Solve for q_{H2O} ($q_{H2O} = -q_{metal}$)

Use formula for q_{metal} to solve for s_{metal}

 $A = 0.269 J/g^{\circ}C^{18}$

Heat Evolved During a Chemical Reaction

Reaction conducted in a Styrofoam cup calorimeter

- •The calorimeter does not absorb or give off heat.
- Heat absorbed by the solution in the calorimeter (q_{cal}) is the heat that has been given off by the chemical reaction (-q_{rxn})

Two solutions are mixed in the calorimeter 40.0 mL of 1.00 M KOH(aq) 40.0mL of 0.500M $H_2SO_4(aq)$ T_i of both solutions = 21.00°C

Data on final solution Density: 1.02 g/mL S.H.: 4.00 J/g°C

Volume: 80.0 mL Temp.: 27.85°C

Styrofoam cups

action

Calculate the enthalpy change, ΔH , of this reaction per mole of H_2O formed.

```
1. What is the chemical reaction?
               2 KOH + H<sub>2</sub>SO<sub>4</sub> \rightarrow K<sub>2</sub>SO<sub>4</sub>(aq) + 2H<sub>2</sub>O
                           \Delta H_{rxn} = q_{rxn} = -q_{water}
                              q = m \times s \times \Delta T
2. What information is given?
Initial Information:
                                          Final information:
40.0 mL of 1.00 M KOH(aq)
                                          Density: 1.02 g/mL
40.0 mL of 1.00 M H_2SO_4(aq)
                                           Volume: 80.0 mL
T_i of both solutions = 21.00°C
                                           S.H.: 4.00 J/g°C (not just H_2O)
                                           Temp: 27.85°C
```

Note: Δ H calculated from calorimetry is heat that was transferred into the water in the <u>CALORIMETER</u>, not water from the chemical reaction!!! Amount of heat generated here is for 81.6g of reactants, not per mole H₂O! Since you need Δ H per mole, you need to calculate how many moles of water you produced. ²⁰

Calculating the ΔH per mole H₂O, con't

Calculate heat of reaction (q) from experiment. The calculated q_{H2O} will be per gram of reactants used.

Calculate the # of moles of water produced in the reaction. Need to find LR!

Calculate ΔH per 1 mole of water produced. Remember that $q_{H20} = -q_{rxn}$.

Typical Heats of Reactions

TABLE 6.3	Heats of Some Typical Reactions Measured at Constant Pressure		
Type of Reaction Example		ΔH (kJ)	
Heat of neutralization		$HCl(aq) + NaOH(aq) \longrightarrow NaCl(aq) + H_2O(l)$	-56.2
Heat of ionizat	ion	$H_2O(l) \longrightarrow H^+(aq) + OH^-(aq)$	56.2
Heat of fusion		$H_2O(s) \longrightarrow H_2O(l)$	6.01
Heat of vaporiz	ation	$H_2O(l) \longrightarrow H_2O(g)$	44.0*
Heat of reaction	n	$MgCl_2(s) + 2Na(l) \longrightarrow 2NaCl(s) + Mg(s)$	-180.2

Calculating ΔH_{rxn} Using Known Values: Standard Enthalpies of Formation (ΔH_f°) & Reaction ($\Delta H_f^\circ_{rxn}$)

The standard state of an element: $\Delta H_f^\circ = 0$

- Pure element in its most stable form at 1 atm & 20°C
- Solvents in aqueous solution are at a concentration of 1 M ex: $H_2(g) N_2(g) O_2(g) Cl_2(g) Br_2(l) Hg(l) Na(s)$ - all have $\Delta H_f^{\circ} = 0$
- The standard molar enthalpy of formation, ΔH_{f}°
- ΔH_f for 1 mol substance produced from elements in standard states
- Tabulated for compounds at 1atm and 20°C ex: C(s) + O₂(g) \rightarrow CO₂(g) Δ H_f° = -393.5kJ/mol

Calculation of ΔH_{rxn} **Using Known Values**

Calculating ΔH° of a chemical reaction

- $\Delta H^{\circ}_{rxn} = \Delta H_{f}^{\circ} \text{ products} \Delta H_{f}^{\circ} \text{ reactants}$
- ex: $C(s) + O_2(g) \rightarrow CO_2(g)$
- Multiply each ΔH_f° by the stoichiometric coefficient for that species. Ex:

> $\Delta H_{rxn}^{\circ} = \Delta H^{\circ}_{products} - \Delta H^{\circ}_{reactants}$ = -393.5 - (0+0) = -393.5kJ/mol

*Note: If there are multiple reactants or products, you add the multiple ΔH_{f}° values before subtracting reactants from products. ₂₄

Calculate ΔH_{rxn}° for the combustion of C₂H₅OH(I) ΔH_{f}° values are given below

 $C_2H_5OH(I)+3 O_2(g) \rightarrow 2CO_2(g) + 3H_2O(I)$

 ΔH_{f}° Reactants:

- C₂H₅OH (I): -277.7 kJ/mol
- O₂: 0 kJ/mol

Total reactants =

 $\Delta H_{f}^{~\circ} \, \textbf{Products}$

CO₂(g): -393.5 kJ/mol

H₂O(I): -285.8 kJ/mol

Total products =

 $\Delta H^{\circ} = products - reactants$

 $A = -1366.7 \text{ kJ}^{25}$

Hess's Law Of Constant Heat Summation: Another way to calculate **AH**

The heat of a reaction, ΔH , is constant, whether the reaction is carried out directly in one step or through a number of steps.

The equation for the overall reaction is the sum of two or more other equations (reaction steps).

$$\Delta \mathbf{H}_{rxn} = \Delta \mathbf{H}_1 + \Delta \mathbf{H}_2 + \Delta \mathbf{H}_3 + \dots$$

If you reverse a chemical equation, you reverse the sign of ΔH .

$$\Delta \mathbf{H}_{\mathbf{forward}} = - \Delta \mathbf{H}_{\mathbf{reverse}}$$

Hess' Law Example #1

What is ΔH when KOH(s) reacts with H₂SO₄ (aq)?

2 KOH(aq) + $H_2SO_4(aq) \rightarrow K_2SO_4(aq) + 2H_2O(I)$ This is a 2-step process – dissolve KOH then neutralize – so need to use Hess' Law

Given information: Styrofoam cup calorimetry was used to determine the following:

Step 1. KOH(s) \rightarrow KOH(aq)

ΔH_{sol} of KOH(s) = -58.4 kJ/mol

Step 2. Neutralization reaction

Δ H per mole KOH = -55.9 kJ/mol

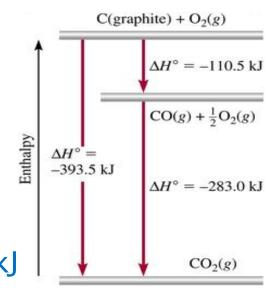
First: Need **2 mol** KOH in rxn; must double given values.

Then: Add the Δ Hs for all steps of the reactions

Hess' Law: Using Info From Other Reactions

- 1. Find each reactant in 1 equation only
 - Use multiple equations if necessary to find all reactants
- 2. Find each product in 1 equation only
 - Use multiple equations if necessary to find all products
- 3. Add reactions
 - Cross out items that are both products & reactants
 - stoichiometry matters, might not cross out all
 - Add multiples
- 4. Check final equation

Hess' Law Example #2


What is the enthalpy of the reaction between carbon and oxygen to form carbon dioxide?

2 C(graphite) + $O_2(g) \rightarrow 2$ CO(g) $\Delta H= ?$

You are given the following information:

 $C(graphite) + O_2(g) \rightarrow CO_2(g) \Delta H = -393.5 kJ$

 $2 \operatorname{CO}(g) + \operatorname{O}_2(g) \rightarrow 2 \operatorname{CO}_2(g) \qquad \Delta H = -566.0 \text{ kJ}$

2 C(graphite) + $O_2(g) \rightarrow 2$ CO(g) $\Delta H= -221.0$ kJ