Chapter 3

10.0 g + excess \longrightarrow ? g

Stoichiometry

Atomic Mass, Avogadro's Number, & Molar Mass²

Average Atomic Mass

Atomic Mass: Mass of an atom in atomic mass units

1 amu = 1/12 of the mass of 1 C-12 atom \rightarrow The mass of a ¹²C atom = 12 amu = 1.661X10⁻²⁴ g

= mass 1 proton or 1 neutron

Naturally occurring carbon is a mixture of isotopes ${}^{12}_{6}C$ 98.90% 6 protons 6 neutrons 12.000 amu ${}^{13}_{6}C$ 1.100% 6 protons 7 neutrons 13.003 amu

 ${}^{14}_{6}$ C ~ 10⁻¹² 6 protons 8 neutrons 14.003 amu (C-14 is unstable)

Atomic mass of naturally occurring carbon:

(0.9890 x 12.000 amu)+ (0.0110 x 13.003 amu) = Atomic Mass of C = 12.01 amu

¹³C 1.10%

The Mole – like a dozen but a lot more! Mole

of atoms in 12.00g of C-12

Avogadro's number (N_a)

- # particles in 1 mole
- $N_a = 6.022 \times 10^{23} \text{ particles/mol}$
- Determined experimentally

Similar to the word "dozen"

 Makes numbers more manageable

1 Mole of each substance

For most chemicals, a mole is an amount that can be measured in a lab (using a balance, etc.) (Atoms are too small to measure on a balance)

C-12: $\frac{12.00g}{1mole} x \frac{1mole}{6.022x10^{23} atoms} = 1.993x10^{-23} g / 1atom$

Molar Mass The mass of one mole of a substance

Equal to AMU, but in units of g/mol

To calculate for a compound:

- Find atomic mass of each element \rightarrow located on Periodic table (often below symbol)
- Multiply atomic mass of element by subscript, then add all elements together.

= 22.99 g/mol

= 64.07 q/mol

- Molecular mass: mass of molecule \rightarrow include every atom
- Formula mass: mass of ions in a salt \rightarrow use smallest ratio

Examples:

- 1 mol Na
- $1 \text{ mol } SO_2$
- 1 mole NaCl = 58.44 g/mol
- NaCI ionic compound

SO₂ - molecule

Calculating Molar Mass

1.) NaCl

2.) SO₂

3.) Pb(NO₃)₂

Mole-based Calculations (Mass/Mole/Particle Conversions)

6

Molar Mass (*M*): grams/mol – from Periodic Table! Avogadro's Number N_a: 6.022x10²³ particles/mol

moles \rightarrow mass What is the mass, in grams, of 0.557 mol K₂O? (52.5 g)

mass \rightarrow # moles How many moles are there in 25.64 g of K₂O? (0.2722 mol) # moles \rightarrow # particles How many molecules are in 2.6 moles of CO₂? (1.6 x 10²⁴ molecules)

moles \rightarrow # particles How many ions are in 2.6 moles of NaCl? (3.1 x 10²⁴ ions)

particles \rightarrow # moles If you have 2.5 x 10²² atoms of gold, how many moles do you have? How many grams do you have? (0.042 mol)

Combined!

How many atoms are there in 2.578 g of SO_2 (MM = 64.065 g/mol)?

Mass \rightarrow Moles \rightarrow Molecules \rightarrow Atoms

A: 7.270 x 10²² atoms

Percent Composition of Compounds by Mass (Mass % Compostion)

- General idea for percentages is "part / total"
- For mass %: mass of each element in the compound divided by the total mass of the compound
- Units should be the same for both values (usually g)

To Determine the Mass % of a Compound:

- Assume 1 mole of compound.
 This will make subscripts = # moles of each element
- Calculate molar mass of compound.
- Calculate mass of each element based on subscripts.
- For each element, divide mass by molar mass of compound

Step 2: Divide each elemental mass by the molar mass of $Ca(CIO_2)_2$ (Total should equal approximately 100%)

Determination of Empirical Formulas by Elemental Analysis (Combustion)

13

- Burn measured amount of compound with excess O_2 . • $C_xH_yO_z + O_2 \rightarrow CO_2 + H_2O + Unused O_2$
- Measure mass of products (must know what they are)
- Use mass of products to determine moles & mass of each element present
 - CO₂ and H₂O contain all C and H atoms
 - **Determine amount of oxygen by difference**
- If know molar mass can determine molecular formula

Determining Empirical Formula from Experiment¹⁴ A 0.595g sample of a CHO compound burns in O₂ to produce 1.188g CO₂ and 0.486g H₂O. What is the empirical formula? $C_xH_yO_z + O_2 \rightarrow CO_2 + H_2O + Unused O_2$ MM CO₂ = 44.01 g/mol Determine Moles & Mass of C from CO₂

Determine Moles & Mass of H from H₂O

Determine Mass & Moles of O from what is left

Divide by smallest # moles to get formula: C_2H_4O

Chemical Reactions & Chemical Equations: Chemical Equations

Shorthand description of a chemical reaction
 Like a recipe!

• Symbols & formulas represent elements & compounds

 $\mathsf{H_2}(g) + 2\mathsf{C}(s) + \mathsf{Cl_2}(g) \rightarrow \mathsf{C_2H_2Cl_2}(g)$

Chemical Equations

 $\mathsf{H}_2(g) + 2\mathsf{C}(s) + \mathsf{Cl}_2(g) \rightarrow \mathsf{C}_2\mathsf{H}_2\mathsf{Cl}_2(g)$

<u>Reactants</u>: Starting substances on left: H_2 , C, Cl_2 <u>**Products:**</u> Substances formed on right: $C_2H_2Cl_2$

Values in front of symbols: Stoichiometric coefficients Coefficients = # moles of that substance \rightarrow If there is no #, the coefficient is 1

+ sign: Think of it as "and"; not mathematical adding!

Arrow (produces, yields) – change from products to reactants \rightarrow Shows the direction of reaction (\rightarrow , \leftarrow , \leftrightarrow , \longleftrightarrow)

(g), (s), (l), (aq): chemical phase: gas, solid, liquid, aqueous

Rules & Hints For Balancing Chemical Equations Cannot make something out of nothing!

- ONLY COEFFICIENTS CAN BE CHANGED!!! $H_2O \neq H_2O_2$
- If an element(s) is present in just 1 compound on each side of the equation, balance that element(s) <u>first</u>.
- Balance <u>free</u> elements <u>last</u>. (O₂, C, H₂, etc.)
- Fractions can be cleared at any time by multiplying all coefficients by a common multiplier (often denominator).

 $2 \left[C_4H_{10} + 13/2 \text{ } O_2 \rightarrow 4 \text{ } CO_2 + 5 \text{ } H_2\text{O}\right] \rightarrow 2 \left[C_4H_{10} + 13 \text{ } O_2 \rightarrow 8 \text{ } CO_2 + 10 \text{ } H_2\text{O}\right]$

• Groupings of atoms (such as in polyatomic ions) may remain unchanged. In such cases, you can balance these groupings as a unit.

Balancing Chemical Equations Starting – Unbalanced (no coefficients): 1.) $H_2 + O_2 \rightarrow H_2O \mid 2.) C_2H_5O_2 + O_2 \rightarrow CO_2 + H_2O$

Balanced: 1.) $2H_2 + O_2 \rightarrow 2H_2O$ 2.) $4C_2H_5O_2 + 9O_2 \rightarrow 8CO_2 + 10H_2O$

Amounts of Reactants and Products: Stoichiometry

Calculations based on chemical reactions How much do you need to make what you want?

Stoichiometry: Mole Ratios in Chemical Reactions

3 eggs and 2 cups of flour react to make one cake ratio: 3:2:1

 $2C(s) + 1CI_2(g) + 2H_2(g) \Rightarrow 1C_2H_4CI_2(g)$

2 moles of graphite (carbon), 1 mole of chlorine gas, and 2 moles of hydrogen gas react to form 1 mole of dichloroethane

Mole ratio: 2:1:2:1

Stoichiometry Flow Chart

21

Stoichiometry Flow Chart 2

What is the mass of CO2 produced
when 10.7g of CO reacts with O2 to form CO2?Write and balance the equation: $2CO(g)+1O_2(g) \rightarrow 2CO_2(g)$ Calculate moles of CO (28.0104 g/mol) in10.7g of CO. (0.38200 mol)

Calculate moles of CO₂ from mole ratio. (0.38200 mol)

Calculate grams CO₂ (44.0098g/mol) from moles CO₂. (16.8g)

Limiting Reagents & Reaction Yield:

- Limiting Reagent: Reactant that runs out first!
 - Determines how much product you can make
 - Find by calculating the moles of 1 product from each given amount of reactant
 - Limiting reagent is the reactant producing the <u>smallest</u> amount of product
- Theoretical Yield:
 - Max amount of product that you can make
 Based on limiting reagent!
 - Based on limiting reagent!
 Generally reported in grams

3 eggfarmers.ca +	2c	>	goldmedalflour.com
12	unlimited		
unlimited	12		
12	12		
12	6		

169.87 g/mol	27.026 g/m	ol	13	3.886 g/m	ol	26
AgNO ₃ +	HCN		\rightarrow	AgCN	+	HNO ₃
If you make 20.0 g of sil is your limit	silver cyani ver nitrate a ing reagent	de, which is u and 15.0 g of ? What is you	used in e hydrog r theore	electroplat en cyanide tical yield	ing, f gas, of Ag	rom what CN?
Step 1: Make Step 2: Mole need	e sure equa es of reactar I both!	tion is balanc nts – for limit	ed. ing reag	ent,	Why you mal silv or h cya limi	/ might want to ke either er nitrate hydrogen nide your ting
Step 3: Cros prod	s the mole luces smalle	bridge. Limitest amount of	ing read produc	gent t! <mark>(LR = Ag</mark> l	reag NO₃)	gent?

Step 4: Use the limiting reagent to determine the mass of AgCN. (15.8 g)

Yields of Chemical Reactions

Reactions rarely produce maximum product

- a. Impure reactants
- b. Incomplete reaction
- c. All product not fully recovered
- d. Side reactions may occur

Actual yield: Yield recovered during experiment

Theoretical yield: Yield calculated from limiting reagent

Percent yield =
$$\begin{pmatrix} Actual yield \\ Theoretical yield \end{pmatrix} X 100$$

If you start with 4.00 g of hydrogen gas and 22.00g of nitrogen gas, and make 18.5 g of ammonia, what is your percent yield?

Step 2:

Step 3:

Step 4:

Step 5:

82.1 % yield