
Chapter 2: Atoms, Molecules, and Ions

The Atomic Theory

Proof atoms exist

Laws of Chemical Combination

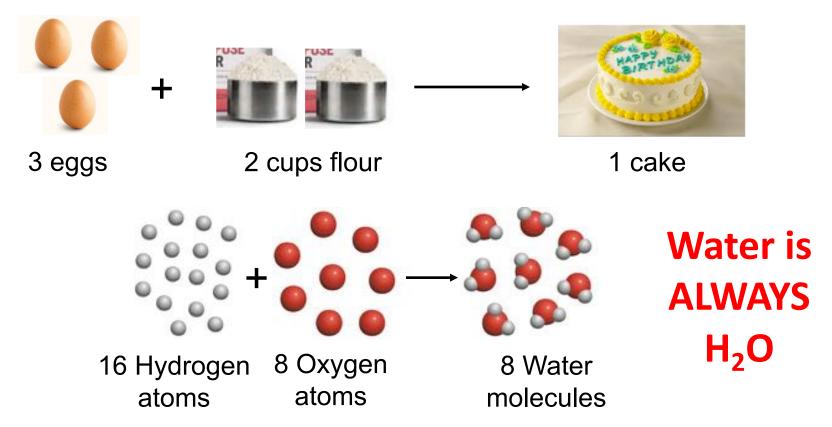
Atomic Theory of Matter: Dalton (1808)³

- 1. All matter is composed of tiny particles called atoms
- 2. All atoms of a given element are identical, but atoms of different elements differ in size, mass, & chemical properties

Fluorine atom: 18 amu

Hydrogen atom: 1 amu

3. Compounds are formed when atoms of different elements combine in fixed proportions.


4. A chemical reaction involves atomic rearrangement. No atoms are created or destroyed.

Law of Definite Proportions – Joseph Proust 1799

- Supports Part 3 of Atomic Theory

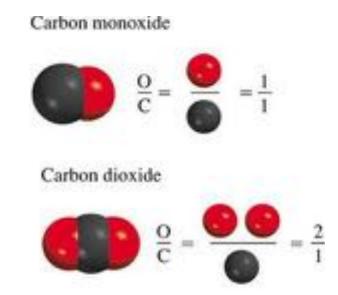
A compound will always have same chemical composition

• Each product is formed from definite proportions of reactants

• Same mass proportions & atomic ratios of elements present

Law of Multiple Proportions

If the same two elements can combine to form more than one compound:


- The **masses** of one element combine with a fixed mass of the second element.
- The combination is in a ratio of **small whole numbers**.

Open face sandwich 1 bread + 1 filling 1:1 ratio

Regular sandwich 2 bread + 1 filling 2:1 ratio

Compounds are formed when atoms of different elements unite in fixed proportions

Law of Conservation of Mass

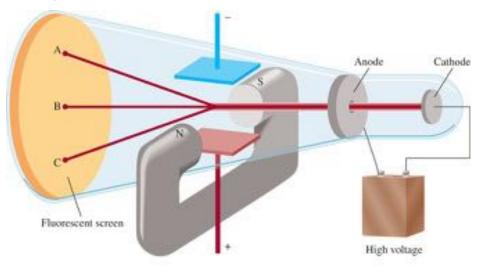
Total mass is constant during a chemical reaction Mass of reactants must exactly match mass of products

2lbs potatoes + 3 ounces milk + 1 ounce butter = 2.25 lbs mashed potatoes

Called mass balance

11.1g $H_2(g) + 88.9g O_2(g) = 100.0g H_2O(l)$

Matter cannot be created or destroyed in chemical reactions!


Structure of the Atom What's on the inside?!?

The Electron and Cathode Rays (1890's)

Electricity causes ray to be deflected in a vacuum

Few molecules: minimal molecular interference Applied magnetic field or electric field deflects ray

Ray is attracted to positively (+) charged anode, so it must be made of negatively (-) charged particles

Atom not smallest piece of matter – had charged "things" inside!

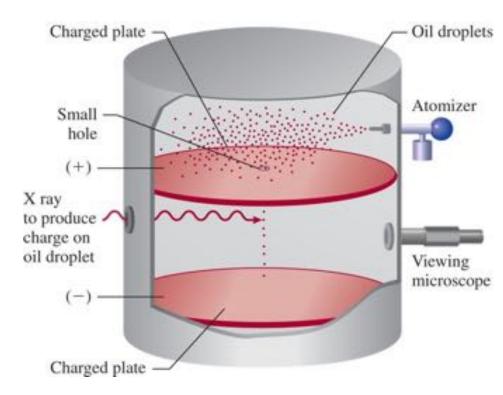
Millikan Oil Drop Experiment

Determination of charge and mass of electron JJ Thompson:

Ratio of cathode ray particle's charge to mass

$$= -1.76 \times 10^8 \text{ C/g}$$

Negatively charged particle is called an electron


Robert Millikan

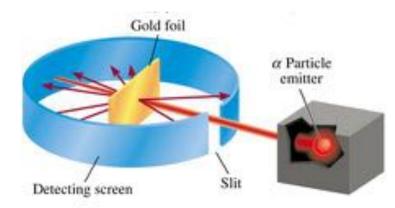
Charge on an electron:

$$e = -1.602 \times 10^{-19} C$$

Mass of an electron:

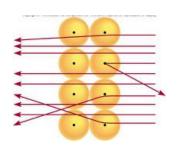
$$m_e = 9.10 \times 10^{-28} g$$

Discovery of The Nucleus



J. J. Thomson's Raisin (or Plum) Pudding Model

· Positively charged sphere with electrons imbedded inside


Rutherford's Experiments

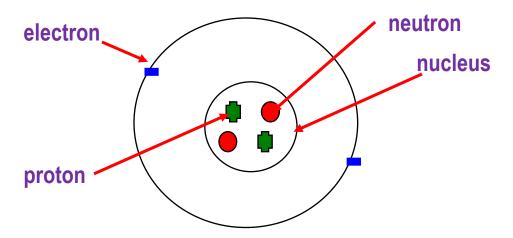
• Shot α particles through gold foil

Results:

- Most hit detector w/ no interference (empty space!)
- Some deflected from straight line: Charge interference
- A few reflected back toward emitter
 - Hit something small & positive in center
 Nucleus!

The Atom and Sub-Atomic Particles

Protons

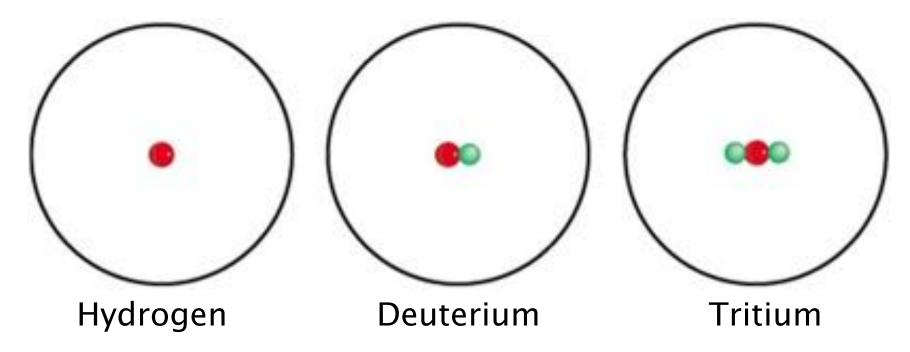

large, positively charged particles in small central nucleus

Electrons

tiny, negatively charged particles in cloud around nucleus

Neutrons

large, neutral particles in nucleus

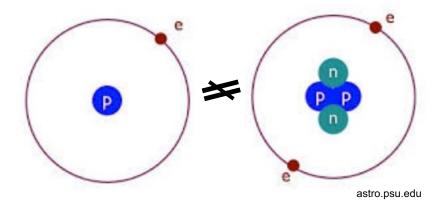


- Elements are not electrically charged
- Must have equal numbers of protons & electrons

Neutrons

Subatomic particle with same mass as proton

- Discovered by James Chadwick
- Located in nucleus
- No charge accounts for extra mass of isotopes
- Change in mass, no change in chemical properties


Modern View of the Atom

$$i\hbarrac{\partial\Psi}{\partial t}=-rac{\hbar^2}{2m}
abla^2\Psi+[V_1(x)+iV_2(x)]\Psi$$

- Protons (p+) & Neutrons (no) in nucleus
- Electrons (e⁻) in "cloud" around nucleus
 - Exist in mathematically defined energy levels
 - Highest energy level electrons can travel furthest away from nucleus
 - Electrons in highest energy level are called <u>valence</u> <u>electrons</u>
 - Chemical reactions and bonding most often involve valence electrons.
 - Max number of valence electrons is 8 (an octet)
 - 8 valance electrons is stable (don't want to react)

Atomic Number, Mass Number, & Isotopes

Differences between atoms

Atomic Symbols

Atomic Number (Z)

protons in a nucleus

Determines element identity

Located lower left on symbol

can also be used to determine # electrons in uncharged atom

Mass Number (A)

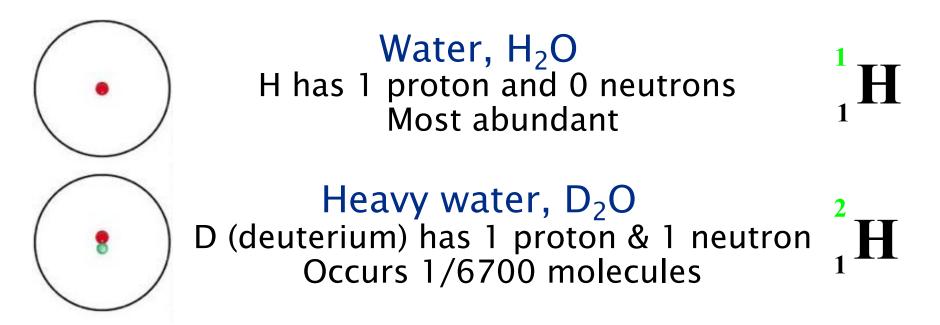
protons + # neutrons

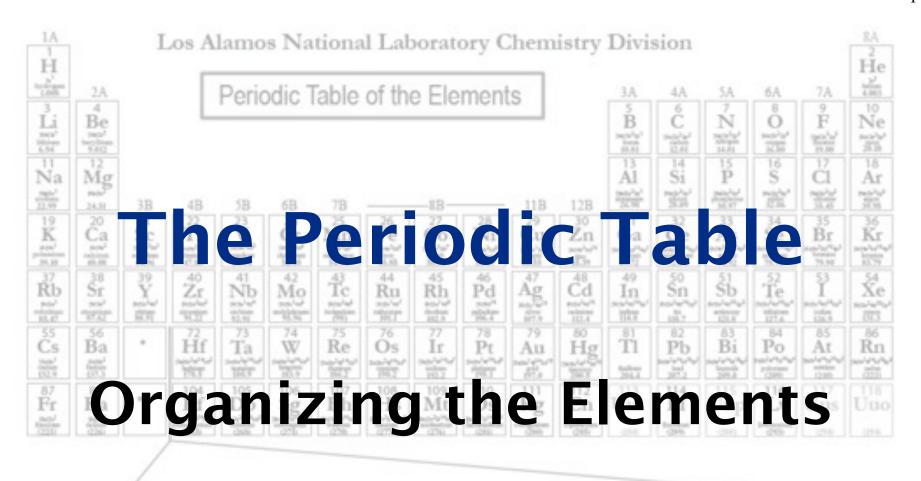
Determines isotope identity Located upper left on symbol

- use to determine # neutrons!

General Form

Actual Element


35 C1


Isotopes

Elements with the same number of protons and electrons, but differing number of <u>neutrons</u>

Used in chemistry for structure identification or to follow a particular molecule through a reaction

Example: hydrogen and deuterium

Lambanide Series*

57 La Ce

Nd Pm

Sm Eu

Gd Tb

Dy Juntari St.3

Ho Er

Tm

Yb Lu 102 103

Activide Series**

-- A

Th

a U

pople

TIRT

Np Np

u Am

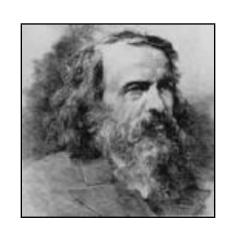
Cm

ČÍ movina

Es Fm

Md

No L


Los Alamo

CHEMISTRY

Mendeleev's Periodic Table 1869

Known elements arranged in order of increasing **atomic mass** from left to right and from top to bottom in groups.

Elements with similar properties are placed in same column.

	H						
He	1 Li	Be	В	С	N	0	F
4	7	9	11	12	14	16	19
Ne	Na	Mg	Al	Si	Р	S	CI
20	23	24	27	28	31	32	35
Ar	K	Ca		Ge	As	Se	Br
40	39	40			75	79	80
Kr	Rb	Sr	In	Sn	Sb	Te	ı
84	85	88	115	119	122	128	127
Xe	Cs	Ba	TI	Pb	Bi		
131	133	137	204	207	209		
Rn							
(222)							

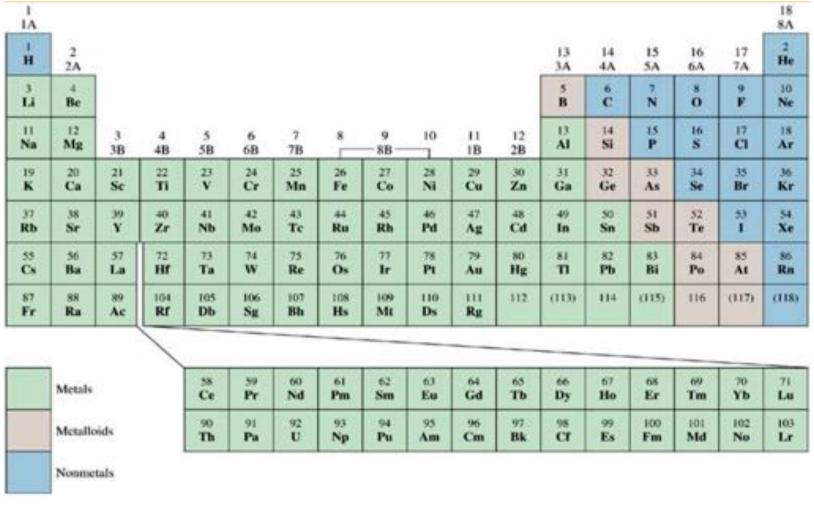
Used table to predict properties of undiscovered elements!

Eka-Silicon

MM: 72

Density: 5.5g/mL

Color: dirty gray


Germanium

MM: 72.6

Density: 5.47g/mL

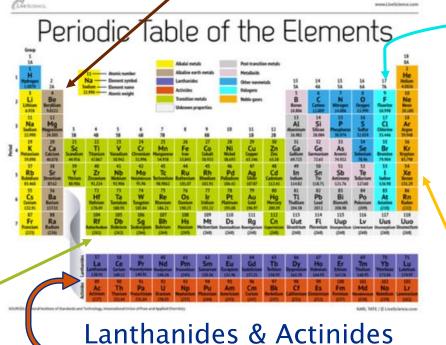
Color: grayish white

The Modern Periodic Table

Green Blue Pink Metals Nonmetals Metalloids Ductile, malleable, conductive, positive ionic charge Brittle solids, often gases or liquids, negative charge Properties of both metals and nonmetals

Groups in the Periodic Table

Alkali Metals


- Group 1A
- +1 charge
- Highly reactive

Alkali Earth Metals

- Group 2A
- +2 charge
- Reactive

Halogens

- Group 7A
- -1 charge
- Highly reactive
- Diatomic molecules

Transition metals

- Center of table
- Varying (+) charge
- · Use Roman numerals

• Bottom of table

- Very reactive
- + charge
- Often radioactive

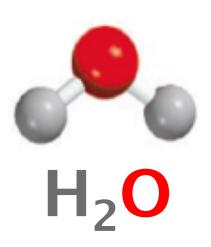
Noble Gases

- Group 8A
- + charge (if charged)
- Inert

Elements you should be familiar with by the end of this course:

(Name & Symbol)

First 4 rows of periodic table Including 1st row of transition metals


Additional elements

Ag: Silver Pb: Lead

I: lodine Hg: Mercury

(A Periodic Table with both names & symbols will be provided in this class, but you may be expected to know these in future chemistry courses.)

Chemical Formulas & Names

Sodium chloride

Types of Compounds

Ionic:

- Cation + Anion
- Form from transfer of electrons
- Often metal + nonmetal
 - Elements that are very "different"
 - Opposite sides of Periodic Table
- Ex. NaCl (sodium chloride)
- Contain specific ratios of ions but no specific number of ions

Covalent:

- Form by sharing electrons
- Contain atoms, not ions
- Often nonmetal + nonmetal
 - Elements that are "similar"
 - Same side of Periodic
 Table
 - Hydrogen is a nonmetal
- Ex. CO₂ (carbon dioxide)
- Molecules contain specific numbers of atoms.

Chemical Formulas

Represent chemical composition (atomic ratios)

- Empirical: Ratio of atoms (NH₂ instead of N₂H₄)
 - Can use for ionic or covalent compounds
- Molecular: Actual # of atoms (N₂H₄)
 - Only use for covalent compounds. Molecule = covalent
- **Structural**: Shows how atoms are connected in <u>molecules</u>

	Hydrogen	Water	Ammonia	Methane
Molecular formula	H ₂	H ₂ O	NH ₃	CH ₄
Structural formula	н-н	н-о-н	H-N-H H	H-C-H
Ball-and-stick model	6-6		600	900

Names of Binary Molecules (2 Elements, Covalent)

Names and formulas have 2 parts, 1 for each element:

```
Dinitrogen tetroxide ----- N<sub>2</sub>O<sub>4</sub>
```

1st word is 1st element name ----- N = Nitrogen

2nd word is 2nd element name

 \rightarrow change ending to "-ide" ----- O = Oxygen \rightarrow Oxide

Formula: Subscripts = # of atoms ----- N_2O_4

Name: Prefix = # of atoms ----- Dinitrogen tetroxide

Do not include a prefix for the <u>first element</u> if there is only one atom

Ex: CO_2 = Carbon dioxide (not monocarbon dioxide) CO = Carbon monoxide

Memorize prefixes up to 10

# atoms	prefix	# atoms	prefix
1	mono	6	hexa
2	di	7	hepta
3	tri	8	octa
4	tetra	9	nona
5	penta	10	deca

Note that the o or a at the end of the prefix is often dropped when the element begins with a vowel.

- Monoxide, not monooxide
 - Tetroxide, not tetraoxide

Names & Formulas of Binary Molecules

1.) N₂O

2.) SO₃

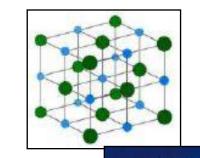
3.) P₂O₅

4.) nitrogen dioxide

5.) dinitrogen tetroxide

Ionic Compounds (salts)

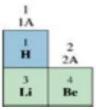
During a reaction atoms may gain or lose electrons

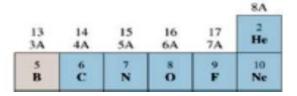

Both atoms become charged and are called ions

Anion: atom gaining the electron is negatively charged

Cation: atom losing the electron is positively charged

Will bind together to form crystals

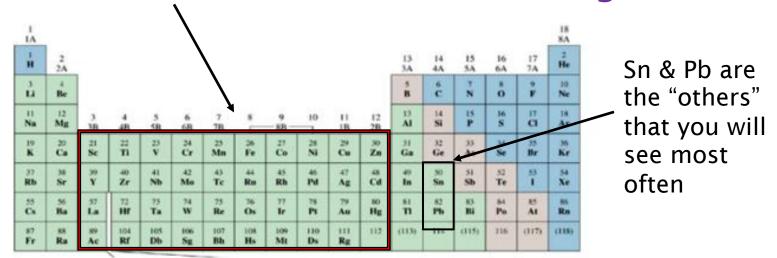

The net charge on the compound is 0 Cations & anions balance out Get charges from periodic table



Positive charge of cation attracts all nearby anions

Using the Periodic Table to Predict Ionic Charge (Main Group Elements Only)

Goal: Get 8 valence electrons ("full")


- electrons in "outermost" energy level
- "A" column number tells number of valence electrons
- Noble gases (column 8A/18) already have 8 generally no charge
- Can gain or lose electrons to get 8 generally do what is easier
- Electrons are negative → gain electrons = negative charge!

The correct charge is <u>usually</u> the smallest number

Left Side (metals): Li¹⁺ or Li⁻⁷ Mg²⁺ or Mg⁶⁻

Right Side (nonmetals): O^{6+} or O^{2-} F^{7+} , or F^{1-}

Charges on Transition & Other Multi-charge Metals³⁰

- Become cations
- Charge is unpredictable
- Often have more than one charge (also possible for some main group elements)
 - Designated with a Roman Numeral
 - Iron (III) = Fe^{3+} ; Iron (II) = Fe^{2+}
 - Roman numerals required in names of ionic compounds if cation can have more than one charge
 - Iron (III) oxide
 - Copper (II) chloride

Polyatomic Ions

- Charged molecules
- Lose or gain electrons as a group
- Charge is spread over 2 or more atoms

Memorize the following polyatomic ions!

Ammonium	NH_4^+	Hydronium	H_3O^+
Phosphate	PO ₄ ³⁻	Acetate	CH ₃ COO ⁻
Hydroxide	OH-	Nitrate	NO_3^-
Cyanide	CN-	Sulfate	SO_4^2
Permanganate	MnO_4^-	Chlorate	CIO ₃ -
Carbonate	CO ₃ ²⁻	Perchlorate	CIO ₄ -

Formula of an Ionic Compound must give an overall charge of zero!

Al & O

Ca & Br

Na & CO₃

Names of lons and lonic Compounds

Naming Ions:

For cations: add the word ION after element name

Na = sodium

- In col 1A, so loses 1 e⁻
- Na⁺ =

Al = aluminum

- In col 3A, so loses 3 e
- $A^{3+} =$

For anions: change the element name ending to -ide first

Cl = chlorine

- In col 7A, so gains 1e
- C| =

O = oxygen

- In col 6A, so gains 2 e
- O² =

Naming Ionic Compounds (ie salts):

- · Write the name of the cation followed by the name of the anion.
- If the cation can have more than one charge, include a Roman Numeral representing the charge after the name of the cation.

Na & Cl

Net Charge: (+1) + (-1) = 0Chemical Formula is NaCl

Na = sodium Cl = chloride

Name = Sodium chloride

Al & O

Net Charge: 2(+3) + 3(-2) = 0Chemical Formula is Al_2O_3

AI = aluminum

O = oxide

Name = Aluminum oxide

Fe & S

If Iron is +2

Net Charge: (+2)+(-2) = 0

Chemical Formula is FeS

Name = Iron (II) sulfide

If Iron is +3

Net Charge: 2(+3)+3(-2) = 0

Chemical Formula is Fe₂S₃

Name = Iron (III) sulfide

Naming Ionic Compounds

4.) $Ca(NO_3)_2$

2.) CaF₂

5.) K₃PO₄

3.) KF

If the formula contains a cation that can have more than one charge, you need to determine the charge based on the anion & include it as a Roman Numeral.

6.) PbCl₂

7.) Fe_2O_3

Acids and Bases

Acid

- Arrhenius: Compound ionizes in H₂O to form H⁺ & anions
 - Name by changing anion -ide ending to -ic acid
 - Add hydro to acids with HX formula (X=halogen; col.17)
 ex: HCl = <u>Hydro</u>chloric acid
- Bronsted acids: H⁺ grabs H₂O to form H₃O⁺ in water

Base

- Arrhenius: Compound ionizes in H₂O to form OH⁻ & cations
 - Name as salts: All hydroxide salts are considered bases
- Bronsted base: Pulls H+ from H_2O so NH_3 is a base: $H_2O + NH_3 \Rightarrow OH^- + NH_4^+ \Rightarrow NH_4OH$

Neutralization

Reaction between acid & base – form water & a salt
 H⁺ + OH⁻ ⇒H₂O and cation + anion ⇒ salt
 HCl + NaOH ⇒H₂O + NaCl (aq)

Common acids and bases

Be able to recognize & associate formula with name

Acids

Hydrochloric Acid: HCl Carbonic Acid: H_2CO_3

Sulfuric Acid: H₂SO₄ Nitric Acid: HNO₃

Chloric Acid: $HCIO_3$ Phosphoric Acid: H_3PO_4

Perchloric acid: HClO₄ Acetic Acid: CH₃COOH

Bases

Sodium hydroxide: NaOH

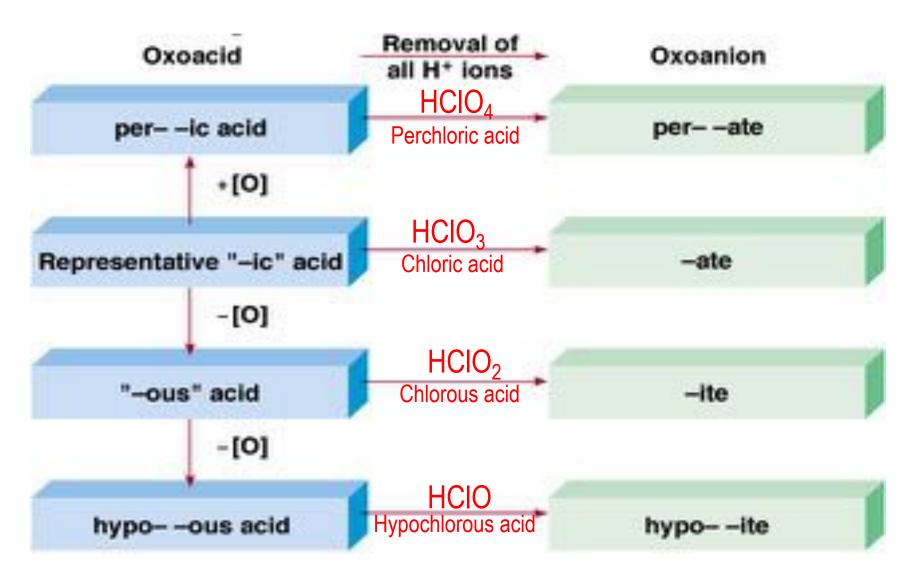
Potassium hydroxide: KOH

Ammonium hydroxide: NH₄OH (actually ammonia, NH₃ in H₂O)

Lithium hydroxide: LiOH

Hydrates

Compounds associated w/fixed number of water molecules


Presence of water alters properties such as color

Copper(II)sulfate CuSO₄ Copper(II)sulfate pentahydrate CuSO₄•5H₂O

Naming Hydrates

- Use numerical prefixes for # of water molecules
 - mono, di, tri, etc.
- Add "hydrate" to the prefix & include at end of name
- A dot shows associated H₂O in formula
 Water molecules must be included when calculating mass

Naming Oxoacids and their Anions: <u>Reference Only</u>

