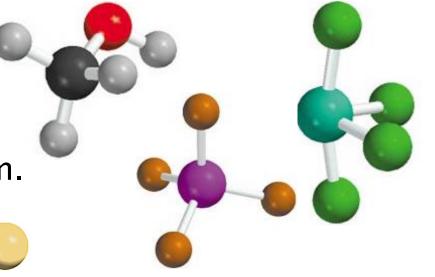

Chapter Ten

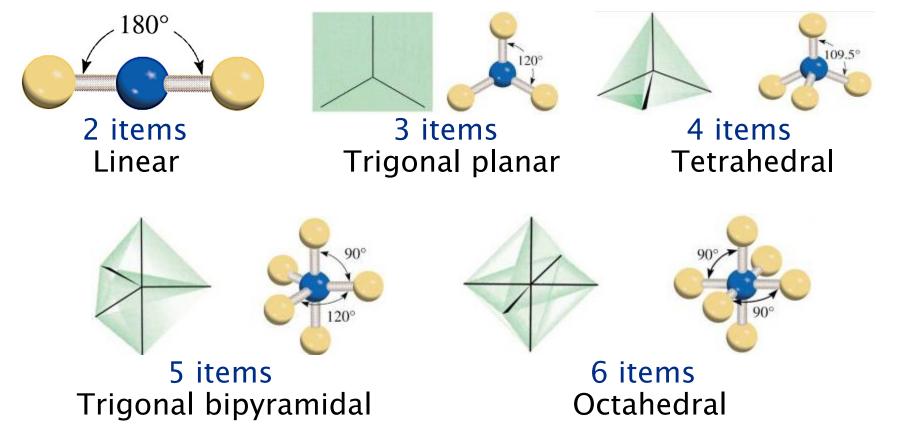
Chemical Bonding II:

Molecular Geometry & Hybridization of Atomic Orbitals

Molecular Geometry:


Valence-Shell Electron-Pair Repulsion Theory (VSEPR)

Theory based on the idea that pairs of valence electrons in bonded atoms repel one another.


- Assumes electron pairs try to get as far apart as possible
- Each lone pair or bond takes up ~ same amount of space (lone pairs have slightly more repulsion than bonded pairs)
- # electron pairs ("items") determines molecular geometry

Molecular Geometry:

The shape of a molecule that describes the location of nuclei & the connections between them.

- Bond angles due to number & type of electron pairs
 - Electron pair = lone pair or bond (an "item") (single, double, triple all count as one "item")
- Molecular geometry does not describe the location of lone pairs but they still help determine the shape!
- Electron pair geometry includes the location of lone pairs

Determining Molecular Geometry

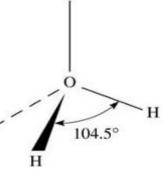
Lone pair electrons not seen but take up space

- Act as "invisible bond"
- Have greater repulsion than bonded electrons

Single, double or triple bonds count as 1 bond

To determine electron pair geometry

• Add up all the "items" (bonds & lone pairs) on the atom


$$H-\ddot{O}-H$$
 2 bonds + 2 lone pairs = 4 items

The number of items around the central atom tells you the geometry

- Electron pair geometry: 4 items = tetrahedral

To determine molecular geometry

- Match to table of geometries based on number of lone pairs and bonded atoms
 - Molecular Geometry: 2 atoms + 2 lone pairs = Bent

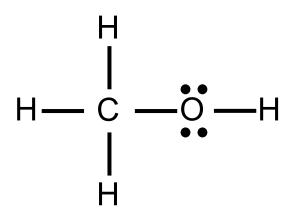
If central atom has no lone pairs (only atoms), molecular geometry = electron pair geometry.

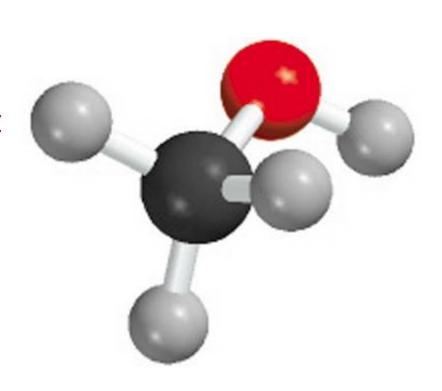
If central atom has lone pairs, molecular and electron pair geometries will be different

Table 10	or More Lone	Pairs			ar Attom Tido Ono	
Class of Molecule	Total Number of Electron Pairs	Number of Bonding Pairs	Number of Lone Pairs	Arrangement of Electron Pairs*	Geometry of Molecule or Ion	Examples
AB_2E	3	2	1	B A B Trigonal planar	Bent	SO ₂
AB ₃ E	4	3	1	B A B B Tetrahedral	Trigonal pyramidal	NH ₃
AB_2E_2	4	2	2	A B B Tetrahedral	Bent	H ₂ O
$\mathrm{AB_4E}$	5	4	1	B B B B B B B B B B B B B B B B B B B	Distorted tetrahedron (or seesaw)	SF ₄
AB_3E_2	5	3	2	B A B Trigonal bipyramidal	T-shaped	CIF ₃
AB_2E_3	5	2	3	B A B B Trigonal bipyramidal	Linear	I ₃
AB ₅ E	6	5	1	B B B B B Coctahedral	Square pyramidal	BrF ₅
AB_4E_2	6	4	2	B B B	Square planar	
				Octahedral		XeF ₄

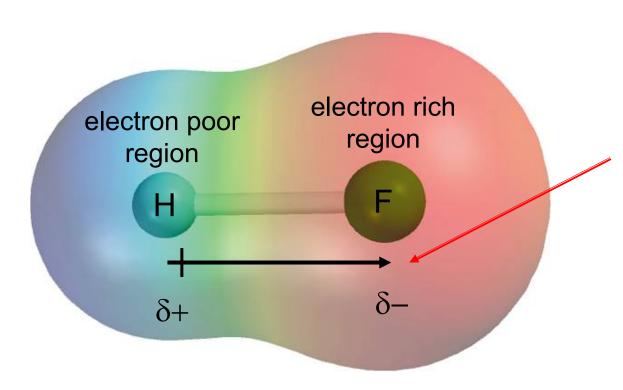
^{*}The colored lines are used to show the overall shape, not bonds.

Molecules with More than 1 Central Atom


Geometry must be done separately for each atom


May have a different geometry around each atom

ex: Methanol CH₃OH


C: 4 bonds: tetrahedral

O: 2 bonds & 2 lone pairs : bent

Polar Molecules & Dipole Moments (µ)

Arrow with "plus" end is used to represent dipole, points to more electronegative atom

$$\mu = \mathbf{Q} \times \mathbf{r}$$

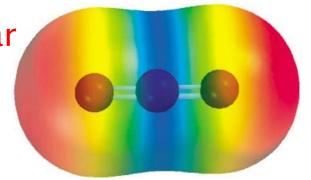
- **Q** = charge
- r = distance between charges
- Measured in debeye units (D)

$$1 D = 3.36 \times 10^{-30} C m$$

C = coulomb (unit for charge) m = meters

Predicting Molecule Polarity: CO₂

Step 1: Draw Lewis Structure: O=C=O


Step 2: Are bonds polar? 3.5-2.5 = 1 Yes

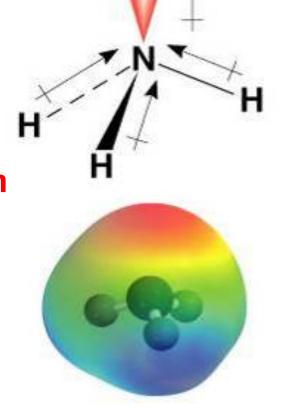
- Note that if bonds are nonpolar, there is no permanent dipole ($\mu = 0$)

Step 3: Determine geometry:

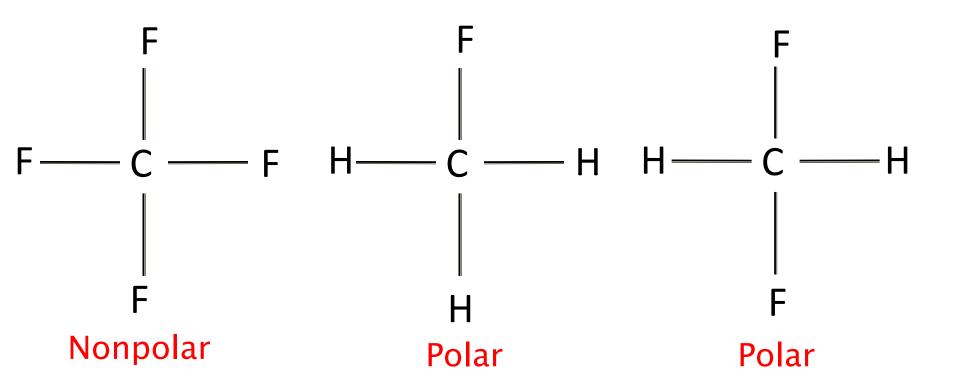
2 items (2 bonds, no lone pairs) = Linear

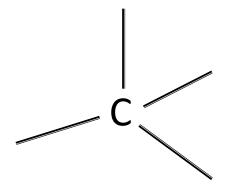
Step 4: Draw bond dipoles: O=C=O

- Step 5: Do dipoles cancel or combine?
 - Dipoles are equal and opposite, so they cancel
 - The individual bonds may be polar, but the overall molecule is **nonpolar**
 - $\mu = 0$


Predicting Polarity: NH₃

- 1: Draw Lewis Structure
- 2: Determine electron pair geometry 3 bonds, one lone pair = tetrahedral
- 3: Determine bond dipoles.


 H less electronegative than N


 3.0 2.1 = 0.9; polar bond

 lone pair adds to δ on the nitrogen
- 4: Bond dipoles cancel or combine?
 - All point in same direction
 - Not pulling against each other Combine: Polar molecule

Be careful with tetrahedral molecules

Only nonpolar if:

- All bonds equally nonpolar
- All substituents identical

Polarity of Isomers Can Be Different

Isomers:

Same molecular formula Different structure

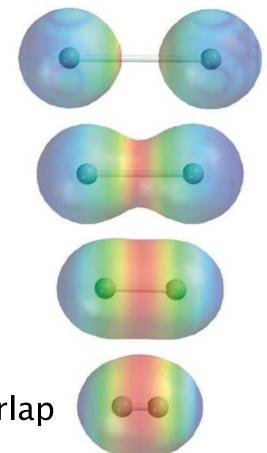
Cis

Large groups on same side of double bond plane

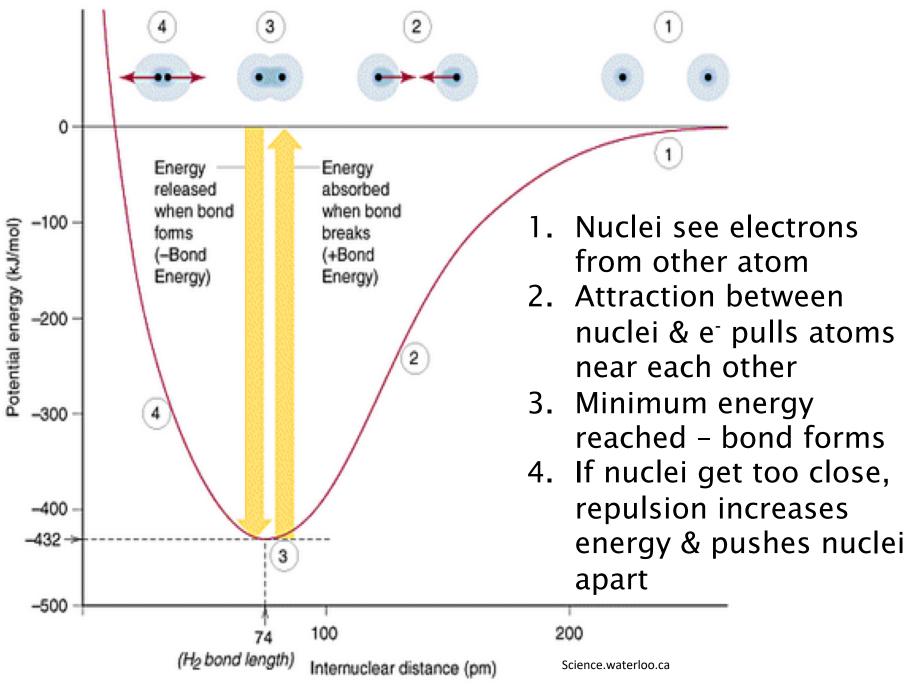
Trans

Large groups across plane of double bond

Dichloroethylene: C₂H₂Cl₂ 2 possible isomers Cis-dichloroethylene **Polar** Trans-dichloroethylene Nonpolar


	# Items	Electron Pair Geom.	Molecular Geom.	Polarity
NH ₃				
BeCl ₂				
CH ₂ Cl ₂				
SCI ₂				
XeF ₆ ²⁺				

Why & How Do Covalent Bonds Form?


Valence Bond Theory (overlap of <u>atomic</u> orbitals)

Formation of H_{2:}

- The s orbitals from each H overlap
- Electrons pair up (opp. spins) & occupy overlap region between 2 atoms
- Shield nuclei from each other
- Area of high electron density (red) between nuclei
- Lowers energy, provides stability
- Bonding electrons are found in the overlap region (covalent bond)

Lowering energy is driving force behind bond formation

Problems with Valence Bond Theory

Ex: Formation of bonds with Carbon Electronic configuration

- Electronic configuration
- 2 half-filled orbitals on C [He] $2s^22p_x^{-1}2p_y^{-1}2p_z^{-0}$
- C should have 2 bonds

Experimentally

- C has 4 identical bonds: CH₄
- Implies 4 half-filled orbitals [He] $2s^12p_x^12p_y^12p_z^1$
- Need to excite one 2s electron to a 2p orbital

Problems with Theory

Would have 4 bonds, but with differing energies & lengths

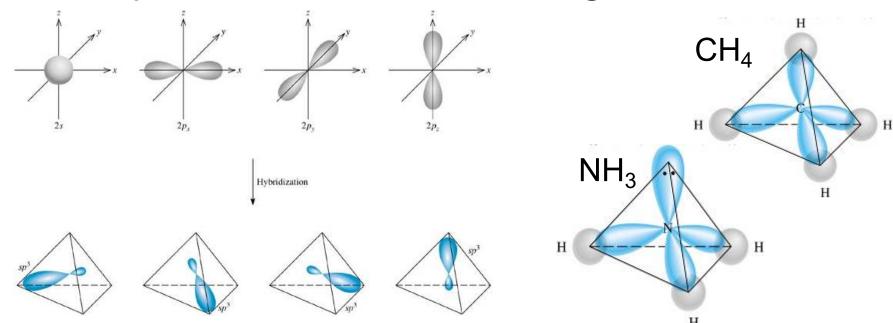
- 3 bonds: H 1s C 2p Higher energy
- 1 bond: H 1s C 2s Lower energy

Experimentally all bonds are identical!

Theory #2: Hybridization of atomic orbitals Explanation for carbon's 4 identical bonds

Combines atomic orbitals to form hybrid orbitals

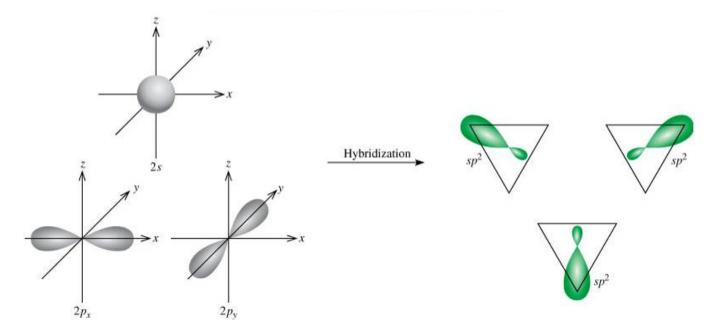
- Allows use of s, p and d electrons in bonds
- Form hybrid orbitals with equivalent energies
- # molecular (hybrid) orbitals = # atomic orbitals used
- Allows for the creation of several identical bonds
- "Averages" orbital energies to give bonds equal energy


Can use VSEPR theory to predict hybridization

- Draw Lewis structure
- Use VSEPR to determine electron geometry
- Determine hybridization based on # orbitals needed
- Hybrid orbitals may contain bonding pairs or lone pairs

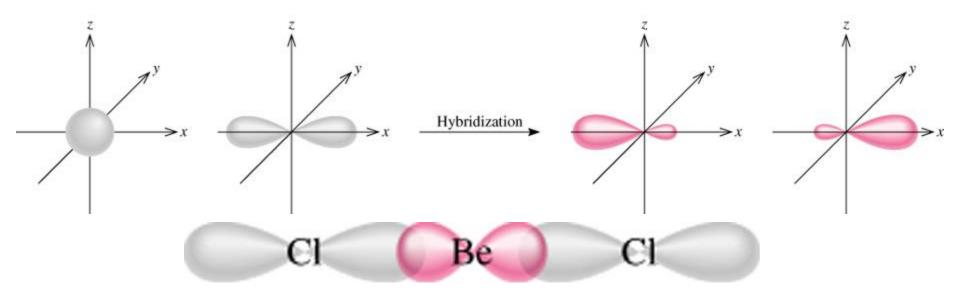
Types of Hybridized Orbitals: sp³

Four sp³ orbitals from one s orbital + three p orbitals


- Results in tetrahedral geometry
- CH₄: all sp³ orbitals occupied by bonding electrons
- NH₃: one sp³ orbital occupied by a lone pair, 3 sp³ orbitals occupied by bonding electrons
- Orbitals point toward corners of tetrahedron
- Generally involves formation of single bonds

sp² Hybridization

Three sp² orbitals from one s + two p orbitals


- The 3 sp² hybrid orbitals lie in a plane (flat)
- The other p orbital remains a p orbital
- Trigonal planar geometry: 120° angles.
- Often involves double bonds (using the p orbital)

sp Hybridization

Two sp orbitals from one s + one p orbital

- The two sp orbitals lie on an axis (linear)
- The other two p orbitals remain p orbitals
- Linear geometry: 180° angles
- Triple bonds may be present (using the p orbitals)

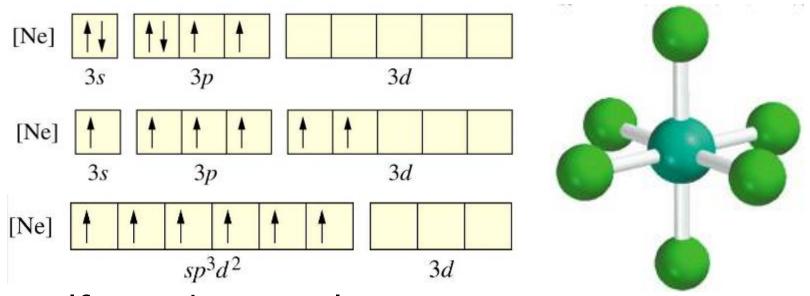
Be: the two 2s valence electrons go into two sp hybrid orbitals

Hybrid Orbitals Involving d Subshells

Allows central atom to have expanded valence shell

sp³d hybridization:

- Five sp³d hybrid orbitals from one s orbital + three p orbitals + one d orbital
- Involves promotion of an s e to a d orbital
 - ex: PCl₅ 3 s e⁻ promoted to 3d orbital
- Trigonal bipyramidal molecular geometry


sp³d² hybridization:

- Six sp³d² hybrid orbitals
- Involves promotion of an s and a p e- to a d orbital
 - ex: IF₅ 5 s & 5 p e⁻ promoted to 5d orbitals
- Octahedral molecular geometry

Note that in these examples the hybridization is on the central atom

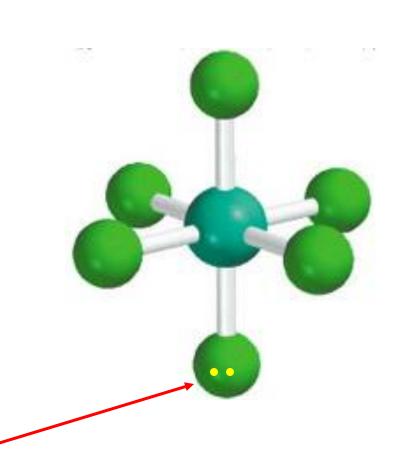
Hybrid Orbitals: d and f Subshells

Promotion of electrons into higher subshells makes them available for bonding

ex 1: sulfur as the central atom

A 3s and a 3p electron are promoted to the 3d subshell

- makes 6 sp³d² hybrid orbitals
- one unpaired electron in each
- allows for the formation of 6 single bonds

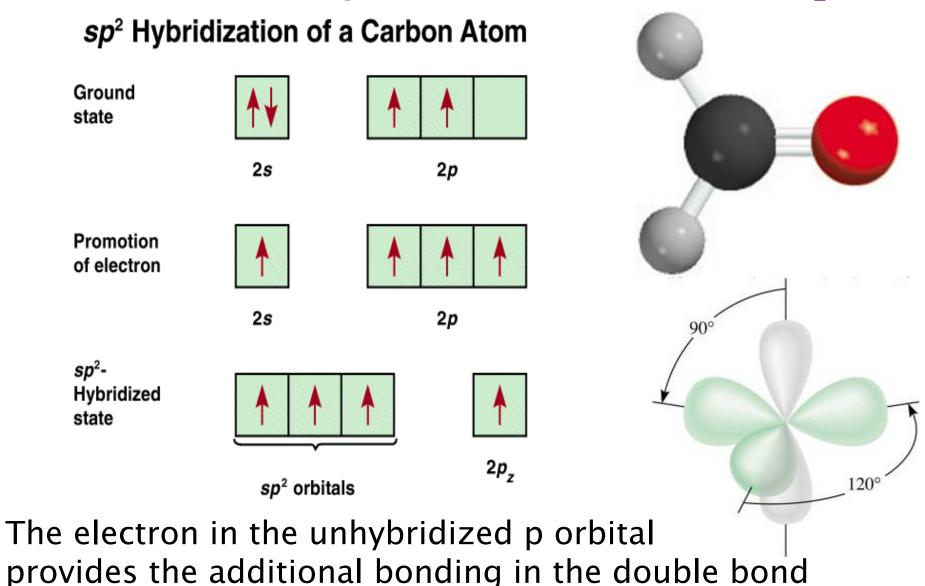

ex 2: Bonding Scheme for Iodine Pentafluoride (IF_5)

5 bonds + 1 lone pair

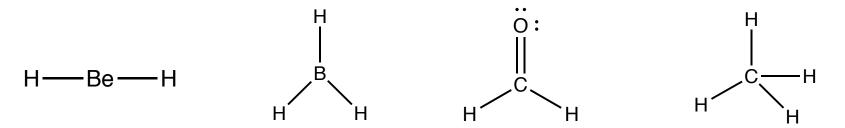
Electron Geometry
Octahedron

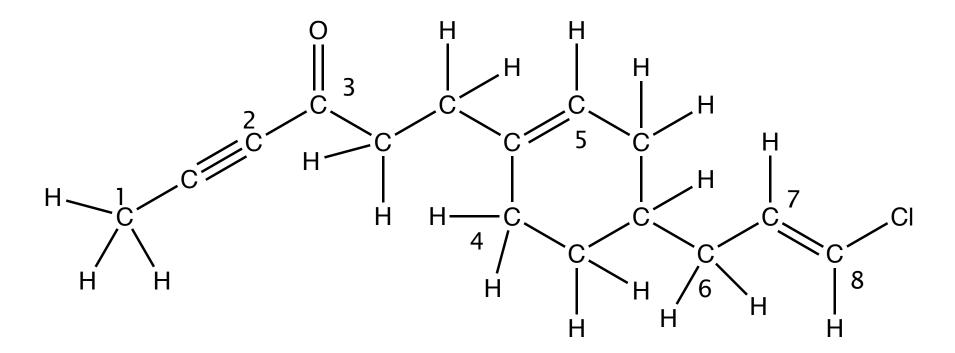
Molecular Geometry Tetragonal Pyramid

Bonding
6 sp³d² orbitals
5 I - F bonds
1 lone pair



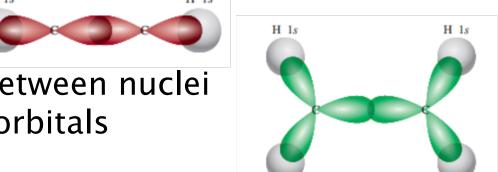
Hybrid Orbitals & Geometries

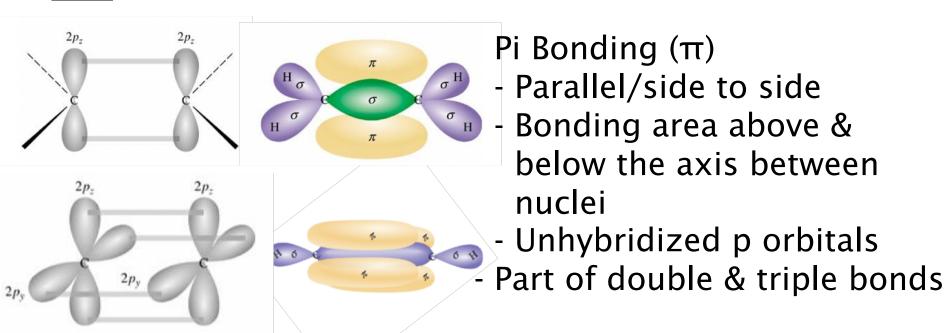

Pure Atomic Orbitals of the Central Atom	Hybridiza- tion of the Central Atom	Number of Hybrid Orbitals	Shape of Hybrid Orbitals	Examples
p	φ	2	180°	BeCl ₂
р. р	sp^2	3	120° Trigonal planar	BF ₃
, р, р. р	sp^{1}	4 .	Tetrahedral	CH ₄ , NH ₄ *
p, p, p, d	sp^3d	5	120°	PCI ₅
p, p, p, d, d	sp^3d^2	6	90°	SF ₆


Hybridization in Double & Triple Bonds

Carbon Bonding: sp² Hybridization of CH₂O

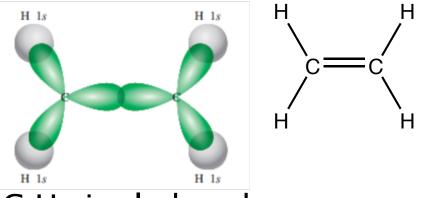
Just look at # items around atom in question


Sigma and Pi Bonding


Sigma Bonding (σ)

- End to end

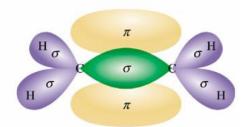
- s, p, d, or hybridized orbitals
- Single bonds
- Part of double & triple bonds



Double & triple bonds form from a σ plus 1 or 2 π bonds

Sigma and Pi Bonding in Ethylene (C₂H₄)

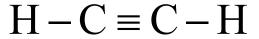
Formation of the σ bonds:

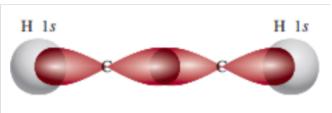

- Each C has three sp² orbitals
- Two sp² orbitals from each C overlap with an s orbital from one of the H's to form the four C-H single bonds

- The remaining sp^2 orbitals on each C overlap with each other to form the σ bond portion of the C=C double bond

Formation of the π bond:

- Each C has one unhybridized p orbital
- The unhybridized p orbitals overlap to form the π bond portion of the C=C double bond
- There are two parts to the π bond because p orbitals have two lobes.


Sigma and Pi Bonding in Acetylene (C₂H₂)

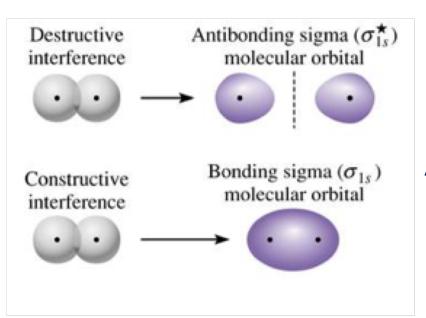

Formation of the σ bonds:

- Each C has two sp orbitals
- One sp orbital from each C overlaps with an s orbital from one of the H's to form the two C-H single bonds
- The second sp orbitals on each C overlap with each other to form the σ bond portion of the $C \equiv C$ triple bond

Formation of the π bonds:

- Each C has two unhybridized p orbitals
- The unhybridized p orbitals overlap to form the two π bond portions of the $C \equiv C$ triple bond
- There are two parts to each π bond because p orbitals have two lobes.

Number of sigma (σ) & pi bonds (π)


Each single bond = one σ bond Each double bond = one σ bond + one π bond Each triple bond = one σ bond + two π bonds

A:
$$\sigma = 36$$

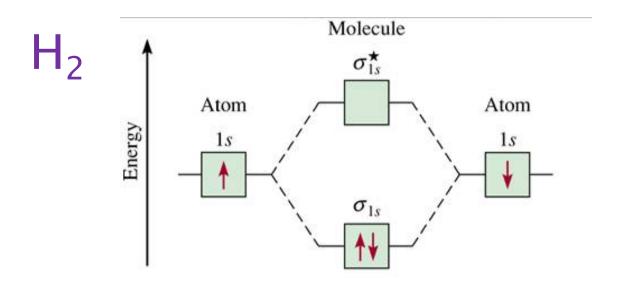
 $\pi = 5$

Molecular Orbital Theory (Reference)

Molecular orbitals (MOs)

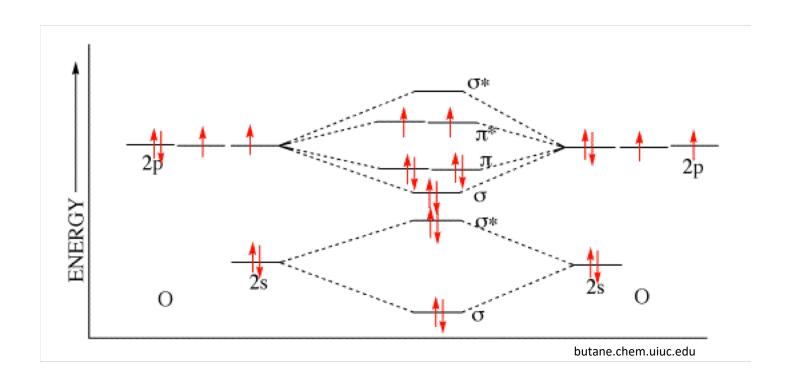
- σ & π orbitals
- result from the interaction of atomic orbitals
- # atomic orbitals involved = # molecular orbitals
- Based on idea that electrons have wave characteristics

Bonding orbitals (σ, π)


- Lower energy then atomic orbitals
- High charge density in center
- having e⁻ in these orbitals stabilizes molecule (good)

Antibonding orbitals (σ^* , π^*)

- Higher energy then atomic orbitals
- No e density in center
- having e⁻ in these orbitals destabilizes molecule (bad)


Molecular Orbital Diagrams

Like electron configuration for molecules!

- Start with 2 atomic orbitals, get 2 molecular orbitals
- Have an antibonding orbital for each bonding orbital
 - more electrons in bonding orbitals than in antibonding orbitals results in a stable molecule
- s orbitals make σ orbitals, p orbitals make σ & π orbitals

MO Diagram for O₂

- More electrons = more complicated MO Diagrams
- Exact energy differences and locations of orbitals on these diagrams depends on the atoms involved.