Chemistry 192 Problem Set 7 Spring, 2018

1. Use Table D2 to calculate the standard enthalpy change for the combusion of liquid benzene (C_6H_6) in pure oxygen gas to produce gas phase carbon dioxide and liquid phase water.

Answer: $-3267.4 \text{ kJ mol}^{-1}$

- The enthalpy of vaporization of liquid bromine is 29.96 kJ mol⁻¹ and the normal boiling point of liquid bromine is 58.8°C. Calculate the molar entropy change associated with the boiling of liquid bromine at its normal boiling point.
 Answer: 90.3 J mol⁻¹K⁻¹
- The enthalpy of vaporization of (C₃H₈) at its normal boiling point is 19.04 kJ mol⁻¹. Use Trouton's rule to estimate the normal boiling point of propane. Answer: 219. K
- 4. Use Table D2 to calculate $\Delta G_{r,m}^{\circ}$ and K_P at 298K for the reaction

$$\operatorname{Br}_{2(\ell)} + \operatorname{Cl}_{2(g)} \longrightarrow 2\operatorname{Br}\operatorname{Cl}_{(g)}.$$

Answer: $\Delta G_{r,m}^{\circ} = -1960$. J mol⁻¹, $K_P = 2.2$

5. Consider the reaction

 $\operatorname{PCl}_{5(g)} \longrightarrow \operatorname{PCl}_{3(g)} + \operatorname{Cl}_{2(g)}$

(a) Show that if one starts with pure PCl_5 and a fraction, α , dissociates, the reaction quotient is given by

$$Q_P = \frac{\alpha^2}{(1 - \alpha^2)} P$$

- (b) At 250.°C the equilibrium constant for the reaction is $K_P = 1.78$. Calculate α for P = 0.100 bar and P = 1.00 bar at equilibrium. **Answer**: $\alpha(0.100) = 0.973, \alpha(1.00) = 0.800$
- (c) Calculate $\Delta G_{r,m}$ for an equimolar mixture at 1.00 bar pressure and 250.°C. Answer: -7.29×10^3 J
- (d) Calculate $\Delta G_{r,m}$ for 20.0 per cent dissociation at 250.°C and 1.00 bar pressure. Answer: -1.63×10^4 J
- 6. At 1200.K and a total pressure of 2.0 bar, the equilibrium pressures of gas phase atomic and molecular iodine associated with the equilibrium reaction

$$\mathbf{I}_{2(g)} \rightleftharpoons 2\mathbf{I}_{(g)} \tag{1}$$

are $P_I = 0.094$ bar and $P_{I_2} = 1.906$ bar. Consider a mixture of molecular and atomic iodine gas at 1200.K such that $P_{I_2} = 3.1$ bar and $P_I = 7.3$ bar. Calculate $\Delta G_{r,m}$ for the mixture at nonequilibrum conditions, and predict if the reaction given Eq. (1) proceeds to the left or right. **Answer** 8.2×10^4 J

7. The pressure equilibrium constant for the gas-phase reaction

$$N_2O_{(g)} + \frac{1}{2}O_{2(g)} \rightleftharpoons 2NO_{(g)}$$

is measured at 900.K and found to be $K_P = 0.292$. A mixture of nitrous oxide (N₂O), oxygen gas and nitric oxide (NO) are placed in a container with initial partial pressures $P_{N_2O} = 0.725$ bar, $P_{O_2} = 0.334$ bar and $P_{NO} = 1.11$ bar. Calculate $\Delta G_{r,m}$ for this nonequilibrium mixture, and use the value of $\Delta G_{r,m}$ to predict if the reaction will proceed to the right or left.

Answer: $1.73 \times 10^4 \text{ J}$

8. Use Table D2 of the text to calculate the equilibrium constant of the reaction

$$NO_{(g)} + \frac{1}{2}O_{2(g)} \rightleftharpoons NO_{2(g)}$$

at 25.°C and 35.°C. **Answer**: $K_P(298) = 1.50 \times 10^6, K_P(308) = 7.10 \times 10^5$

9. The following results were obtained for the degree of dissociation, α , of CO₂ in the reaction

$$\operatorname{CO}_{2(g)} \longrightarrow \operatorname{CO}_{(g)} + \frac{1}{2} \operatorname{O}_{2(g)}$$

at a pressure of 1.0 bar:

$T (^{\circ}K)$	α	
1000.	2. x 10^{-7}	
1400.	$1.27 \ge 10^{-4}$	
2000.	$1.55 \ge 10^{-2}$	

Calculate $\Delta H_{r,m}^{\circ}$ for the reaction at 1400.°K. Answer: $8. \times 10^4 \text{ J mol}^{-1}$

10. The standard molar enthalpy of formation and molar Gibbs free energy of formation of solid sodium hydride (NaH) at 298K are given by

$$\Delta H_{f,m}^{\circ} = -56.3 \text{ J mol}^{-1} \qquad \Delta G_{f,m}^{\circ} = -33.5 \text{ J mol}^{-1}.$$

Given the reaction

$$\operatorname{NaH}_{(s)} \longrightarrow \operatorname{Na}_{(s)} + \frac{1}{2}\operatorname{H}_{2(g)}$$

Calculate the temperature at which the pressure of hydrogen in equilibrium with $\operatorname{NaH}_{(s)}$ and $\operatorname{Na}_{(s)}$ is 0.01 bar. **Answer**: 589.K

11. Solid ammonium chloride at 600.K is allowed to come to equilibrium with equimolar amounts of gas phase hydrogen chloride (HCl) and ammonia (NH_3) according to the reaction

$$\mathrm{NH}_4\mathrm{Cl}_{(s)} \rightleftharpoons \mathrm{NH}_{3(g)} + \mathrm{HCl}_{(g)}.$$

Given the table of thermodynamic data valid at 298.K

Substance	$\Delta H^{\circ}_{f,m}$ kJ mol ⁻¹	$\Delta G^{\circ}_{f,m} \text{ kJ mol}^{-1}$
$\operatorname{NH}_{3(g)}$	-45.9	-16.5
$\operatorname{HCl}_{(g)}$	-92.3	-95.3
$\mathrm{NH}_4\mathrm{Cl}_{(s)}$	-314.4	-202.9

calculate the partial pressures of ammonia and hydrogen chloride gas in equilibrium with the solid ammonium chloride at 600K. Answer: 0.62 bar for both gases.

12. Use the following table of thermodynamic data determined at 298.K

Substance	$\Delta H^{\circ}_{f,m}$ kJ mol ⁻¹	$\Delta G^{\circ}_{f,m}$ kJ mol ⁻¹
CaCO _{3(s)}	-1206.9	-1128.8
$CaO_{(s)}$	-634.9	-603.3
$CO_{2(g)}$	-393.5	-394.4

to calculate the temperature at which the pressure of carbon dioxide in equilibrium with calcium carbonate and calcium oxide according to the reaction

$$CaCO_{3(s)} \rightleftharpoons CaO_{(s)} + CO_{2(g)}$$

is 1.00×10^{-5} bar. Answer: $T = 7.00 \times 10^2$ K

13. The partial pressure of hydrogen gas in equilibrium with solid calcium and solid calcium hydride according to the reaction

$$\operatorname{CaH}_{2(s)} \rightleftharpoons \operatorname{Ca}_{(s)} + \operatorname{H}_{2(g)}$$

is 3.05×10^{-1} bar at 1500.K and 5.50×10^{-2} bar at 1700. K. Calculate the partial pressure of hydrogen gas in equilibrium with solid calcium and calcium hydride at 1600.K.

Answer: $P = 1.23 \times 10^{-1}$ bar

14. Use the table of thermodynamic data below valid at 298K to calculate the molar solubility of barium fluoride (BaF_2) in water at 353K.

Substance	$\Delta H_{f,m}^{\circ}$ kJ mol ⁻¹	$\Delta G^{\circ}_{f,m} \text{ kJ mol}^{-1}$
$BaF_{2(s)}$	-1207.	-1157.
$Ba^{2+}_{(aq)}$	-537.6	-560.8
$F^{-}_{(aq)}$	-332.6	-278.8

Answer: 3.8×10^{-3} M

15.

Substance	$\Delta H^{\circ}_{f,m}$ kJ mol ⁻¹	$\Delta G^{\circ}_{f,m}$ kJ mol ⁻¹
$\operatorname{Ca}_3(\operatorname{PO}_4)_{2(s)}$	-4121.	-3885.
$\operatorname{Ca}_{(aq)}^{2+}$	-542.8	-553.6
$PO_{4(aq)}^{3-}$	-1277.	-1019.

Use the table of thermodynamic data valid at 298.K given above to calculate the temperature at which the solubility of calcium phosphate solid in water is 1.5×10^{-7} M.

Answer: 2.8×10^2 K

16. Use the table of thermodynamic data valid at 298K given below to calculate the temperature at which the molar solubility of silver sulfate in water is 0.0200 M.

Substance	$\Delta H^{\circ}_{f,m} \; (\text{kJ mol}^{-1})$	$\Delta G^{\circ}_{f,m} \; (\mathrm{kJ} \; \mathrm{mol}^{-1})$	$S_m^{\circ} (\mathrm{J} \mathrm{mol}^{-1} \mathrm{K}^{-1})$
$Ag_2SO_{4(s)}$	-715.9	-618.4	200.4
$\operatorname{Ag}_{(aq)}^+$	105.6	77.11	72.68
$SO_{4(aq)}^{2-}$	-909.3	-744.5	20.1

Answer: 346K

17. The molar solubility of silver sulfate in water is 1.4×10^{-2} M at 298 K and 1.2×10^{-2} M at 280 K. Calculate $\Delta H_{r,m}^{\circ}$, $\Delta G_{r,m}^{\circ}$ and $\Delta S_{r,m}^{\circ}$ at 298 K for the reaction. Answer: $\Delta H_m = 1.8 \times 10^4 \text{ J mol}^{-1}$, $\Delta G_m = 2.8 \times 10^4 \text{ J mol}^{-1}$, $\Delta S_m = -33 \text{ J mol}^{-1} \text{K}^{-1}$