Chemistry 192 Problem Set 6 Spring, 2018 Solutions

1. The solubility product of $Al(OH)_3$ is 1.1×10^{-15} . Calculate the concentrations of aluminum ions, hydroxide ions and hydronium ions in a saturated aqueous solution of aluminum hydroxide.

Answer:

$$Al(OH)_{3(s)} \rightleftharpoons Al^{3+}_{(aq)} + 3OH^{-}_{(aq)}$$

 $K_{sp} = [Al^{3+}][OH^{-}]^{3} = 1.1 \times 10^{-15}$

	$[Al^{3+}]$	$[OH^{-}]$
initial	0 M	0 M
change	s	3s
equilibrium	s M	3s M

$$27s^{4} = 1.1 \times 10^{-15}$$

$$s = [\text{Al}^{3+}] = 8.0 \times 10^{-5} \text{ M}$$

$$[\text{OH}^{-}] = 3s = 2.4 \times 10^{-4} \text{ M}$$

$$[\text{H}_{3}\text{O}^{+}] = \frac{1.00 \times 10^{-14}}{2.4 \times 10^{-4}} = 4.2 \times 10^{-11}$$

2. The solubility product of Ag₂S is 1.6×10^{-49} . Calculate the molar solubility of silver sulfide in water.

Answer:

$Ag_2S_{(s)} \rightleftharpoons$	$2\mathrm{Ag}^+_{(aq)} +$	$-S_{(aq)}^{2-}$
	$\left[\Delta \alpha^{+}\right]$	[S 2-]

	$[Ag^+]$	$[S^{2-}]$
initial	0 M	0 M
change	2s	s
equilibrium	2s M	s M

$$(2s)^2 s = 4s^3 = 1.6 \times 10^{-49}$$

s = molar solubility = 3.4×10^{-17} M

3. The solubility of Ag_3AsO_4 in water is 8.5×10^{-4} g mL⁻¹. Calculate the solubility product of silver arsenate.

Answer:

$$\begin{split} \mathrm{Ag_3AsO_{4(s)}} &\rightleftharpoons \mathrm{3Ag^+_{(aq)}} + \mathrm{AsO^{3-}_{4(aq)}} \\ \mathrm{moles \ dissolved \ of \ silver \ arsenate} &= \frac{8.5 \times 10^{-4} \ \mathrm{g}}{463 \ \mathrm{g \ mol^{-1}}} = 1.8 \times 10^{-6} \ \mathrm{mol} \\ \mathrm{[AsO^{3-}_4]} &= \frac{1.8 \times 10^{-6} \ \mathrm{mol}}{0.00100 \ \mathrm{L}} = 1.8 \times 10^{-3} \ \mathrm{M} \\ \mathrm{[Ag^+]} &= 3 \mathrm{[AsO^{3-}_4]} = 5.5 \times 10^{-3} \ \mathrm{M} \\ K_{sp} &= (5.5 \times 10^{-3})^3 (1.8 \times 10^{-3}) = 3.1 \times 10^{-10} \end{split}$$

4. The solubility product of Ag₂CO₃ is $K_{sp} = 5.0 \times 10^{-12}$. Calculate the molar solubility of silver carbonate in a) water and b) a 0.20 M aqueous AgNO₃ solution (silver nitrate is 100% ionized).

Answer:

$$\operatorname{Ag}_2\operatorname{CO}_{3(s)} \rightleftharpoons 2\operatorname{Ag}^+_{(aq)} + \operatorname{CO}^{2-}_{3(aq)}$$

		$[Ag^+]$	$[CO_3^{2-}]$
(a)	initial	0 M	0 M
(a)	change	2s	s
	equilibrium	2s M	s M

$$[{\rm Ag^+}]^2 [{\rm CO}_3^{2-}] = 4s^3 = 5.0 \times 10^{-12}$$

$$s = \text{solubility} = [\text{CO}_3^{2-}] = 1.1 \times 10^{-4} \text{ M}$$

		$[Ag^+]$	$[CO_3^{2-}]$
(h)	initial	0.20 M	0 M
(0)	change	2s	s
	equilibrium	(0.20 + 2s) M	s M

$$s(0.20+2s)^2 \approx s(0.20)^2 = 5.0 \times 10^{-12}$$

solubility =
$$s = 1.3 \times 10^{-10} \text{ M}$$

5. The solubility product of AgCl is $K_{sp} = 1.1 \times 10^{-10}$. Calculate the weight of silver nitrate that must be added to 10. mL of a 0.10 M sodium chloride solution to initiate the silver chloride precipitation reaction. Answer:

$$[Ag^{+}][Cl^{-}] = 1.1 \times 10^{-10}$$
$$[Ag^{+}] = \frac{1.1 \times 10^{-10}}{0.10} = 1.1 \times 10^{-9} M$$
$$(1.1 \times 10^{-9} \text{ mol } L^{-1})(0.010 \text{ L}) = 1.1 \times 10^{-11} \text{ mol}$$
$$(1.1 \times 10^{-11} \text{ mol})(170. \text{ g mol}^{-1}) = 1.9 \times 10^{-9} \text{ g}$$

6. The solubility product of Ag_2SO_4 is 7.0×10^{-5} . A laboratory student mixes 10. mL of a 0.010 M silver nitrate solution with 10. mL of a 0.020 M sodium sulfate (Na₂SO₄) solution. Calculate a suitable reaction quotient to determine if silver sulfate precipitate should form when the two solutions are mixed. **Answer**:

$$Ag_2SO_{4(s)} \rightleftharpoons 2Ag^+_{(aq)} + SO^{2-}_{4(aq)}$$
$$[Ag^+] = 0.0050 \text{ M} \qquad [SO^{2-}_4] = 0.010 \text{ M}$$
$$Q = [Ag^+]^2[SO^{2-}_4] = (0.0050)^2(0.010) = 2.5 \times 10^{-7} < K_{sp}$$

No precipitation.

- 7. The solubility product of $Cu(OH)_2$ is 1.0×10^{-16} . Calculate
 - (a) the pH of a saturated solution of copper (II) hydroxide in water; Answer:

($\operatorname{Cu(OH)}_{2(s)} \rightleftharpoons \operatorname{Cu}_{(aq)}^{2+} + 2\operatorname{HO}_{(aq)}^{-}$				
	$K_{sp} = [\mathrm{Cu}^{2+}][\mathrm{OH}^{-}]^2$				
	$\left[\mathrm{Cu}^{2+}\right] \left[\mathrm{OH}^{-}\right]$				
Î	initial	0 M	0 M		
ĺ	change	s	2s		
	equilibrium	s M	2s M		

$$4s^{3} = 1.0 \times 10^{-16} \qquad s = 2.9 \times 10^{-6} \qquad [\text{OH}^{-}] = 2s = 5.8 \times 10^{-6}$$
$$p\text{OH} = -\log_{10}(5.8 \times 10^{-6}) = 5.23 \qquad \text{pH} = 14.00 - \text{pOH} = 8.77$$

(b) the molar solubility of copper (II) hydroxide in a solution having pH=1.00; Answer:

$$[OH^{-}] = \frac{1.00 \times 10^{-14}}{1.00 \times 10^{-1}} = 1.00 \times 10^{-13}$$

$$[\mathrm{Cu}^{2+}] = \frac{1.0 \times 10^{-16}}{(1.00 \times 10^{-13})^2} = 1.0 \times 10^{10}$$

i.e. completely soluble.

(c) the molar solubility of copper (II) hydroxide in a solution having pH=13.00.
 Answer:

$$[\text{OH}^-] = 0.10 \text{ M}$$

 $[\text{Cu}^{2+}] = \frac{1.0 \times 1)^{-16}}{(0.10)^2} = 1.0 \times 10^{-14} \text{ M}$

8. Problem 54, page 814 textbook. Answer:

$$\operatorname{Cu}(\operatorname{NH}_3)^{2+}_{4(aq)} \rightleftharpoons \operatorname{Cu}^{2+}_{(aq)} + 4\operatorname{NH}_{3(aq)} \qquad K = \frac{1}{K_f} = \frac{1}{1.1 \times 10^{13}} = 9.1 \times 10^{-14}$$

	$[Cu(NH_3)_2^{2+}]$	$\left[\mathrm{Cu}^{2+}\right]$	$[NH_3]$
initial	0.10 M	0 M	6.0-0.40 = 5.6 M
change	-x	x	4x
equilibrium	(0.10 - x) M	x M	(5.6 + 4x) M

$$\frac{[\mathrm{Cu}^{2+}][\mathrm{NH}_3]^4}{[\mathrm{Cu}(\mathrm{NH}_3)_4^{2+}]} = \frac{x(5.6+x)^4}{0.10-x} \approx \frac{x(5.6)^4}{0.10} = 9.1 \times 10^{-14}$$
$$x = [\mathrm{Cu}^{2+}] = 9.2 \times 10^{-18} \mathrm{M}$$

9. Problem 56, page 814 textbook. Answer:

As in problem $8\,$

$$\begin{aligned} \operatorname{Cu}(\operatorname{NH}_3)_{4(aq)}^{2+} \rightleftharpoons \operatorname{Cu}_{(aq)}^{2+} + 4\operatorname{NH}_{3(aq)} & K = \frac{1}{K_f} = \frac{1}{1.1 \times 10^{13}} = 9.1 \times 10^{-14} \\ \frac{[\operatorname{Cu}^{2+}][\operatorname{NH}_3]^4}{[\operatorname{Cu}(\operatorname{NH}_3)_4^{2+}]} &= \frac{[\operatorname{Cu}^{2+}](0.10)^4}{0.015} = 9.1 \times 10^{-14} \\ & [\operatorname{Cu}^{2+}] = 1.4 \times 10^{-11} \text{ M} \\ & \operatorname{NH}_{3(aq)} + \operatorname{H}_2\operatorname{O}_{(\ell)} \rightleftharpoons \operatorname{NH}_{4(aq)}^+ \operatorname{OH}_{(aq)}^- \\ & \frac{[\operatorname{NH}_4^+][\operatorname{OH}^-]}{[\operatorname{NH}_3]} = 1.8 \times 10^{-5} \end{aligned}$$

	$[NH_3]$	$[\mathrm{NH}_4^+]$	$[OH^{-}]$
initial	0.10 M	0.10 M	0 M
change	-x	x	x
equilibrium	(0.10 - x) M	(0.10 + x) M	x M

$$\frac{(0.10 + x)x}{0.10 - x} \approx x = 1.8 \times 10^{-5} = [\text{OH}^{-1}]$$
$$\text{Cu(OH)}_{2(s)} \rightleftharpoons \text{Cu}_{(aq)}^{2+} + 2\text{OH}_{(aq)}^{-1}$$
$$Q = [\text{Cu}^{2+}][\text{OH}^{-1}]^2 = (1.4 \times 10^{-11})(1.8 \times 10^{-5})^2$$
$$= 4.5 \times 10^{-21} < K_{sp}$$

No precipitate.

10. Aqueous silver ions form a coordination complex with thiosulfate anions according to the reaction

$$\mathrm{Ag}^+_{(aq)} + 2\mathrm{S}_2\mathrm{O}^{2-}_{3(aq)} \rightleftharpoons \mathrm{Ag}(\mathrm{S}_2\mathrm{O}_3)^{3-}_{2(aq)},$$

where the formation equilibrium constant for the complex is $K_f = 1.7 \times 10^{13}$. Given the solubility product of silver iodide, AgI, is $K_{sp} = 8.5 \times 10^{-17}$, calculate the molar solubility of silver iodide in a solution that is 0.100 M in thiosulfate. **Answer**:

$$AgI_{(s)} \rightleftharpoons Ag^{+}_{(aq)} + I^{-}_{(aq)} \qquad K_{sp} = 8.5 \times 10^{-17}$$

$$\frac{Ag^{+}_{(aq)} + 2S_2O^{2-}_{3(aq)} \rightleftharpoons Ag(S_2O_3)^{3-}_{2(aq)} \qquad K_f = 1.7 \times 10^{13}}{AgI_{(s)} + 2S_2O^{2-}_{3(aq)} \rightleftharpoons Ag(S_2O_3)^{3-}_{2(aq)} + I^{-}_{(aq)} \qquad K = K_{sp}K_f = 1.4 \times 10^{-3}$$

	$[S_2O_3^{2-}]$	$[Ag(S_2O_3)_2^{3-}]$	[I ⁻]
initial	0.100 M	0 M	0 M
change	-2 <i>y</i>	y	y
equilibrium	(0.100 - 2y) M	y M	y M

$$\frac{y^2}{(0.100 - 2y)^2} = 1.4 \times 10^{-3}$$
$$\frac{y}{0.100 - 2y} = 3.7 \times 10^{-3}$$
$$y = 3.4 \times 10^{-3} \text{ M}$$

11. Zinc ions form a complex in cyanide solutions according to the reaction

$$\operatorname{Zn}_{(aq)}^{2+} + 4\operatorname{CN}_{(aq)}^{-} \rightleftharpoons \operatorname{Zn}(\operatorname{CN})_{4(aq)}^{2-}$$

with a formation constant $K_f = 1.0 \times 10^{18}$. It is found that the solubility of solid zinc selenide (ZnSe) in a 0.100 M cyanide solution is 6.0×10^{-5} M. Calculate the solubility of zinc selenide in water.

Answer:

$$\operatorname{ZnSe}_{(s)} + 4\operatorname{CN}_{(aq)}^{-} \rightleftharpoons \operatorname{Zn}(\operatorname{CN})_{4(aq)}^{2-} + \operatorname{Se}_{(aq)}^{2-}$$

	$[CN^{-}]$	$[\operatorname{Zn}(\operatorname{CN})_4^{2-}]$	$[\mathrm{Se}^{2-}]$
initial	0.100 M	0 M	0 M
change	$-4(6.0 \times 10^{-5})$ M	$6.0 \times 10^{-5} { m M}$	$6.0 \times 10^{-5} \mathrm{M}$
equilibrium	0.100 M	$6.0 \times 10^{-5} \mathrm{M}$	$6.0 \times 10^{-5} \mathrm{M}$

$$K = \frac{(6.0 \times 10^{-5})^2}{(0.100)^4} = 3.6 \times 10^{-5}$$

$$= K_{sp}K_f = 1.0 \times 10^{18}K_{sp}$$
$$K_{sp} = 3.6 \times 10^{-23}$$

$$\operatorname{ZnSe}_{(s)} \rightleftharpoons \operatorname{Zn}_{(aq)}^{2+} + \operatorname{Se}_{(aq)}^{2-}$$

	$[Zn^{2+}]$	$[\mathrm{Se}^{2-}]$
initial	0 M	0 M
change	s M	s M
equilibrium	s M	s M

$$s^2 = 3.6 \times 10^{-23}$$

 $s = 6.0 \times 10^{-12} \text{ M}$

12. The silver cyanide coordination complex, $Ag(CN)_2^-$ forms by the reaction

$$\operatorname{Ag}_{(aq)}^+ + 2\operatorname{CN}_{(aq)}^- \rightleftharpoons \operatorname{Ag}(\operatorname{CN})_{2(aq)}^-$$

with associated equilibrium constant $K_f = 5.6 \times 10^{18}$. Given the solubility product of silver iodide (AgI) is $K_{sp} = 8.5 \times 10^{-17}$, calculate the solubility of silver iodide in a solution having [CN⁻]=0.500 M.

Answer:

$$AgI_{(s)} + 2CN^{-}_{(aq)} \rightleftharpoons Ag(CN)^{-}_{2(aq)} + I^{-}_{(aq)}$$

 $K = K_f K_{sp} = 5.6 \times 10^{18} \times 8.5 \times 10^{-17} = 4.8 \times 10^2$

	[CN ⁻]	$[Ag(CN)_2^-]$	[I ⁻]
initial	$0.500 \mathrm{M}$	0 M	0 M
change	-2s	s	s
equilibrium	(0.500 - 2s) M	s M	s M

$$4.8 \times 10^2 = \frac{[\text{Ag}(\text{CN})_2^-][\text{I}^-]}{[\text{CN}^-]^2} = \frac{s^2}{(0.500 - 2s)^2}$$
$$\frac{s}{0.500 - 2s} = 22. \quad s = 11. - 44.s \quad s = 0.24 \text{ M}$$

13. Zinc ions form a coordination complex in aqueous ammonia

$$\operatorname{Zn}_{(aq)}^{2+} + 4\operatorname{NH}_{3(aq)} \rightleftharpoons \operatorname{Zn}(\operatorname{NH}_3)_{4(aq)}^{2+}$$

having formation equilibrium constant $K_f = 4.1 \times 10^8$. Zinc sulfide (ZnS) is only sparingly soluble in water with solubility product constant $K_{sp} = 2.0 \times 10^{-25}$. Calculate the molar solubility of zinc sulfide in a 0.10 M aqueous ammonia solution. Approximations work for this system.

Answer:

$$\operatorname{ZnS}_{(s)} + 4\operatorname{NH}_{3(aq)} \rightleftharpoons \operatorname{Zn}(\operatorname{NH}_{3})^{2+}_{4(aq)} + \operatorname{S}^{2-}_{(aq)}$$
$$K = K_{f}K_{sp} = 8.2 \times 10^{-17} = \frac{[\operatorname{Zn}(\operatorname{NH}_{3})^{2+}_{4}][\operatorname{S}^{2-}]}{[\operatorname{NH}_{3}]^{4}}$$

	$[NH_3]$	$[Zn(NH_3)_4^{2+}]$	$[S^{2-}]$
initial	0.10 M	0 M	0 M
change	-4s	S	s
equilibrium	(0.10 - 4s) M	s M	s M

$$8.2 \times 10^{-17} = \frac{s^2}{(0.10 - 4s)^4} \approx \frac{s^2}{1.0 \times 10^{-4}}$$

 $s = 9.1 \times 10^{-11} \text{ M}$

14. Silver ions (Ag⁺) react with thiocyanate ions (SCN⁻) in aqueous solution to form the coordination complex Ag(SCN)₄³⁻ with associated formation constant $K_f = 1.2 \times 10^{10}$. Consider a solution that is made by adding 0.050 moles of silver ions to 0.250 L of a 2.50 M thiocyanate solution. Calculate the concentration of free silver ions (Ag⁺) when equilibrium is reached. Approximations work for this problem. **Answer**

$$\operatorname{Ag}(\operatorname{SCN})^{3-}_{4(aq)} \rightleftharpoons \operatorname{Ag}^+_{(aq)} + 4\operatorname{SCN}^-_{(aq)}$$

$$K = \frac{1}{K_f} = 8.3 \times 10^{-11}$$

Initially

$$[Ag(SCN)_4^{3-}] = \frac{0.050 \text{ mol}}{0.250 \text{ L}} = 0.20 \text{ M}$$

	$[Ag(SCN)_4^{3-}]$	$[Ag^+]$	$[SCN^{-}]$
initial	0.20 M	0 M	(2.50-4(0.20))=1.70 M
change	-y	y	4y
equilibrium	(0.20 - y) M	y M	(1.70 + 4y) M

$$8.3 \times 10^{-11} = \frac{[\text{Ag}^+][\text{SCN}^-]^4}{[\text{Ag}(\text{SCN})_4^-]} = \frac{y(1.70 + 4y)^4}{(0.20 - y)} \approx \frac{y(1.70)^4}{0.20}$$
$$y = [\text{Ag}^+] = 2.0 \times 10^{-12} \text{ M}$$

15. The formation equilibrium constant for the cobalt ammonia complex $[Co(NH_3)_6^{3+}]$ is $K_f = 4.5 \times 10^{33}$. Calculate the molar concentration of free $Co_{(aq)}^{3+}$ in a solution made by mixing 0.100 L of 0.0500 M Co³⁺ to 0.500 L of 0.250 M aqueous ammonia. Approximations work for this problem.

Answer:

$$Co(NH_3)^{3+}_{6(aq)} \rightleftharpoons Co^{3+}_{(aq)} + 6NH_{3(aq)} \qquad K = \frac{1}{K_f} = 2.2 \times 10^{-34}$$

We assume initially all the cobalt ions are in the form of the complex. The initial concentrations are found using

$$n_{Co^{3+}} = (0.0500 \text{ mol } \text{L}^{-1})(0.100 \text{ L}) = 5.00 \times 10^{-3} \text{ mol}$$

Before complexation

$$n_{NH_3} = (0.250 \text{ mol } \text{L}^{-1})(0.500 \text{ L}) = 0.125 \text{ mol}$$

After complexation

$$n_{NH_3} = 0.125 \text{ mol} - 6(5.00 \times 10^{-3} \text{ mol}) = 0.095 \text{ mol}$$

 $[\text{Co}(\text{NH}_3)_6^{3+}] = \frac{5.00 \times 10^{-3} \text{ mol}}{0.600 \text{ L}} = 8.33 \times 10^{-3} \text{ M}$

$$[\mathrm{NH}_3] = \frac{0.095 \text{ mol}}{0.600 \text{ L}} = 0.16 \text{ M}$$

	$[Co(NH_3)_6^{3+}]$	$[Co^{3+}]$	$[NH_3]$
initial	$8.33 \times 10^{-3} { m M}$	0 M	0.16 M
change	- <i>y</i>	y	6y
equilibrium	$(8.33 \times 10^{-3} - y) \text{ M}$	y M	(0.16 + 6y) M

$$2.2 \times 10^{-34} = \frac{[\text{Co}^{3+}][\text{NH}_3]^6}{[\text{Co}(\text{NH}_3)_6^{3+}]} = \frac{y(0.16+6y)^6}{8.33 \times 10^{-3}-y} \approx \frac{y(0.16)^6}{8.33 \times 10^{-3}}$$
$$y = [\text{Co}^{3+}] = 1.2 \times 10^{-31} \text{ M}$$

16. The solubility product constant for zinc oxalate (ZnC_2O_4) is 2.7×10^{-8} and the formation constant for the zinc cyanide coordination complex $[\text{Zn}(\text{CN})_4^{2-}]$ is 1.0×10^{18} . Consider a mixture that is formed by combing 0.25 L of a 1.0×10^{-4} M CN⁻ solution and 0.35 L of a 6.0×10^{-6} M Zn²⁺ solution. After the solutions are mixed 0.50 moles of oxalate ions are added to the solution. Assuming the added oxalate does not change the total volume of the solution, determine if a zinc oxalate precipitate will form. Approximations work for this problem.

Answer: Before complex formation

$$n_{CN^{-}} = (1.0 \times 10^{-4} \text{ mol } \text{L}^{-1})(0.25 \text{ L}) = 2.5 \times 10^{-5} \text{ mol}$$

 $n_{Zn^{2+}} = (6.0 \times 10^{-6} \text{ mol } \text{L}^{-1})(0.35 \text{ L}) = 2.1 \times 10^{-6} \text{ mol}$

After complex formation

$$n_{CN^{-}} = 2.5 \times 10^{-5} \text{ mol} - 4(2.1 \times 10^{-6} \text{ mol}) = 1.7 \times 10^{-5} \text{ mol}$$
$$[CN^{-}] = \frac{1.7 \times 10^{-5} \text{ mol}}{0.60 \text{ L}} = 2.8 \times 10^{-5} \text{ M} \quad [Zn(CN)_{4}^{2-}] = \frac{2.1 \times 10^{-6} \text{ mol}}{0.60 \text{ L}} = 3.5 \times 10^{-6} \text{ M}$$
$$Zn(CN)_{4(aq)}^{2-} \rightleftharpoons Zn_{(aq)}^{2+} + 4CN_{(aq)}^{-} \qquad K = \frac{1}{K_{f}} = 1.0 \times 10^{-18} = \frac{[Zn^{2+}][CN^{-}]^{4}}{[Zn(CN)_{4}^{2-}]}$$
$$\frac{[Zn(CN)_{4}^{2-}]}{[Zn(CN)_{4}^{2-}]} \qquad [Zn^{2+}] \qquad [CN^{-}]]}{\text{initial} \qquad 3.5 \times 10^{-6} \text{ M} \qquad 0 \text{ M} \qquad 2.8 \times 10^{-5} \text{ M}}$$
$$\frac{\text{change} \qquad -y \qquad y \qquad 4y}{\text{equilibrium} (3.5 \times 10^{-6} - y) \text{ M} \qquad y \text{ M} \qquad (2.8 \times 10^{-5} + 4y) \text{ M}}$$

$$1.0 \times 10^{-18} = \frac{y(2.8 \times 10^{-5} + 4y)^4}{2.5 \times 10^{-6} - y} \approx \frac{y(2.8 \times 10^{-5})^4}{3.5 \times 10^{-6}}$$
$$y = [\text{Zn}^{2+}] = 1.4 \times 10^{-5} \text{ M}$$
$$[\text{C}_2\text{O}_4^{2-}] = \frac{0.50 \text{ mol}}{0.60 \text{ L}} = 0.83 \text{ M}$$
$$Q = [\text{Zn}^{2+}][\text{C}_2\text{O}_4^{2-}] = (1.4 \times 10^{-5})(0.83) = 1.2 \times 10^{-5} > K_{sp}$$

Precipitate forms