Chemistry 192 Problem Set 6 Spring, 2017

1. The solubility product of $Al(OH)_3$ is 1.1×10^{-15} . Calculate the concentrations of aluminum ions, hydroxide ions and hydronium ions in a saturated aqueous solution of aluminum hydroxide.

Answer: $[Al^{3+}] = 8.0 \times 10^{-5} \text{ M}, [OH^{-}] = 2.4 \times 10^{-4} \text{ M}, [H_3O^{+}] = 4.2 \times 10^{-11} \text{ M}$

- 2. The solubility product of Ag₂S is 1.6×10^{-49} . Calculate the molar solubility of silver sulfide in water. Answer: 3.4×10^{-17} M
- 3. The solubility of Ag₃AsO₄ in water is 8.5 ×10⁻⁴ g mL⁻¹. Calculate the solubility product of silver arsenate. **Answer**: $K_{sp} = 3.1 \times 10^{-19}$.
- 4. The solubility product of Ag₂CO₃ is $K_{sp} = 5.0 \times 10^{-12}$. Calculate the molar solubility of silver carbonate in a) water and b) a 0.20 M aqueous AgNO₃ solution (silver nitrate is 100% ionized). Answer: 1.1×10^{-4} M and 1.3×10^{-10} M
- 5. The solubility product of AgCl is $K_{sp} = 1.1 \times 10^{-10}$. Calculate the weight of silver nitrate that must be added to 10. mL of a 0.10 M sodium chloride solution to initiate the silver chloride precipitation reaction. Answer: 1.9×10^{-9} g.
- 6. The solubility product of Ag₂SO₄ is 7.0×10^{-5} . A laboratory student mixes 10. mL of a 0.010 M silver nitrate solution with 10. mL of a 0.020 M sodium sulfate (Na₂SO₄) solution. Calculate a suitable reaction quotient to determine if silver sulfate precipitate should form when the two solutions are mixed. **Answer**: $Q = 2.5 \times 10^{-7}$
- 7. The solubility product of $Cu(OH)_2$ is 1.0×10^{-16} . Calculate
 - (a) the pH of a saturated solution of copper (II) hydroxide in water; Answer: pH=8.77

- (b) the molar solubility of copper (II) hydroxide in a solution having pH=1.00;
- (c) the molar solubility of copper (II) hydroxide in a solution having pH=13.00. Answer: 1.0×10^{-14} M
- 8. Problem 54, page 814 textbook. **Answer**: 9.2×10^{-18} M
- 9. Problem 56, page 814 textbook. Answer: $Q = 4.5 \times 10^{-21}$
- 10. Aqueous silver ions form a coordination complex with thiosulfate anions according to the reaction

$$\operatorname{Ag}_{(aq)}^{+} + 2\operatorname{S}_{2}\operatorname{O}_{3(aq)}^{2-} \rightleftharpoons \operatorname{Ag}(\operatorname{S}_{2}\operatorname{O}_{3})_{2(aq)}^{3-}$$

where the formation equilibrium constant for the complex is $K_f = 1.7 \times 10^{13}$. Given the solubility product of silver iodide, AgI, is $K_{sp} = 8.5 \times 10^{-17}$, calculate the molar solubility of silver iodide in a solution that is 0.100 M in thiosulfate. **Answer:** 3.4×10^{-2} M

11. Zinc ions form a complex in cyanide solutions according to the reaction

$$\operatorname{Zn}_{(aq)}^{2+} + 4\operatorname{CN}_{(aq)}^{-} \rightleftharpoons \operatorname{Zn}(\operatorname{CN})_{4(aq)}^{2-}$$

with a formation constant $K_f = 1.0 \times 10^{18}$. It is found that the solubility of solid zinc selenide (ZnSe) in a 0.100 M cyanide solution is 6.0×10^{-5} M. Calculate the solubility of zinc selenide in water. Answer: 6.0×10^{-12} M

12. The silver cyanide coordination complex, $Ag(CN)_2^-$ forms by the reaction

$$\operatorname{Ag}_{(aq)}^+ + 2\operatorname{CN}_{(aq)}^- \rightleftharpoons \operatorname{Ag}(\operatorname{CN})_{2(aq)}^-$$

with associated equilibrium constant $K_f = 5.6 \times 10^{18}$. Given the solubility product of silver iodide (AgI) is $K_{sp} = 8.5 \times 10^{-17}$, calculate the solubility of silver iodide in a solution having [CN⁻]=0.500 M. Answer: 0.24 M.

13. Zinc ions form a coordination complex in aqueous ammonia

$$\operatorname{Zn}_{(aq)}^{2+} + 4\operatorname{NH}_{3(aq)} \rightleftharpoons \operatorname{Zn}(\operatorname{NH}_3)_{4(aq)}^{2+}$$

having formation equilibrium constant $K_f = 4.1 \times 10^8$. Zinc sulfide (ZnS) is only sparingly soluble in water with solubility product constant $K_{sp} = 2.0 \times 10^{-25}$. Calculate the molar solubility of zinc sulfide in a 0.10 M aqueous ammonia solution. **Answer**: 9.1×10^{-11} M

- 14. Silver ions (Ag⁺) react with thiocyanate ions (SCN⁻) in aqueous solution to form the coordination complex Ag(SCN)₄³⁻ with associated formation constant $K_f = 1.2 \times 10^{10}$. Consider a solution that is made by adding 0.050 moles of silver ions to 0.250 L of a 2.50 M thiocyanate solution. Calculate the concentration of free silver ions (Ag⁺) when equilibrium is reached. Answer: 2.0×10^{-12} M.
- 15. The formation equilibrium constant for the cobalt ammonia complex $[Co(NH_3)_6^{3+}]$ is $K_f = 4.5 \times 10^{33}$. Calculate the molar concentration of free $Co_{(aq)}^{3+}$ in a solution made by mixing 0.100 L of 0.0500 M Co³⁺ to 0.500 L of 0.250 M aqueous ammonia. Approximations work for this problem. Answer: 1.2×10^{-31} M
- 16. The solubility product constant for zinc oxalate (ZnC_2O_4) is 2.7×10^{-8} and the formation constant for the zinc cyanide coordination complex $[\text{Zn}(\text{CN})_4^{2-}]$ is 1.0×10^{18} . Consider a mixture that is formed by combing 0.25 L of a 1.0×10^{-4} M CN⁻ solution and 0.35 L of a 6.0×10^{-6} M Zn²⁺ solution. After the solutions are mixed 0.50 moles of oxalate ions are added to the solution. Assuming the added oxalate does not change the total volume of the solution, determine if a zinc oxalate precipitate will form. Approximations work for this problem. Answer: Yes