Chemistry 432
Problem Set 3
Spring 2019
Solutions

1. Consider a particle of mass m with quantum number n moving in a one-dimensional
box of length L.

(a) Find the probability of finding the particle in the left two-thirds of the box.
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(b) For what value of n is this probability a maximum?
Answer:

p
.804

598
667
701
.639
667
.686
.649
667
.680

O[O || U x| W N3

—_
o

Maximum at n = 1.



(c) What is the probability as n — oo?
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the classical result.

2. For a particle of mass m in a box of length L in quantum state n, find:
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3. Consider a one-dimensional particle of mass m confined to move in a box of length L
on a coordinate system defined so that the potential energy is given by
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(a) Show that the normalized wavefunctions

Yn(z) = (i)lmsin [mr (z+;)} n=123,...

satisfy the Schrodinger equation for the particle within the box.
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(b) Give the appropriate boundary conditions for the system defined in part “a,” and
show that the wavefunctions given in part ‘a” satisfy the boundary conditions.
Answer:
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(c) For a particle in the first excited state with associated wavefunction
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determine at what point or points in space the particle is most likely to be found.
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(d) For a particle represented by the first excited state wavefunction given in part
“c,” calculate the probability that a measurement of the position of the particle
will give a result in the interval —L/2 < z < 0.
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4. The wavefunction for a particle of mass m in a box of length L defined on the interval
—L/2 <x < LJ2is given by

Y(r) = Nsin {7? (; + ;)]

where N is the normalization factor. Derive an expression for the expectation value of
the kinetic energy of the particle.
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5. A particle of mass m is confined to a one-dimensional box of length L in the domain
—L/4 < x < 3L/4. Show that the wavefunction
™
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satisfies the time-independent Schrodinger equation for the system as well as the ap-
propriate boundary conditions.
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6. The normalized wavefunction for a particle of mass m in a one-dimensional box of
length L on the domain 0 < z < L in its 4" excited energy state is given by

n=(2) " (%2)

Calculate the probability that a measurement of the position of the particle will give
a result in the region between x = 0 and the first node of the wavefunction.
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7. The normalized wavefunction for a particle of mass m in a one-dimensional box in
quantum state n on the domain —L/2 <z < L/2 is given by
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Calculate the probability the particle is found on the interval between —L/2 and the
first node of the wavefunction.
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The first node is found at
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8. A particle of mass m is confined to move in a box of length L on the domain —L/10 <
x < 9L/10 by action of potential energy
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The particle is in the state with quantum number n = 2 and associated normalized

wavefunction
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Show that s (z) satisfies the appropriate boundary conditions for the system, and find
the points in space that the particle is most likely to be found.
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. A particle of mass m in a box of length L, defined on the domain —L/5 <z < 4L/5,
occupies its first excited energy state with associate normalized wavefunction
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Let x,, be the coordinate of the node of the wavefunction, x; and zy be the coordinates
where the particle is most likely to be found such that x; < xy. Determine the locations
ZTn, 2y and zy, and calculate the probability that a measurement of the coordinate of
the particle gives a result in the range x; < z < x,,.
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10. A quantum particle of mass m is confined to a one-dimensional box on the domain

11.

—L/2 < x < L/2. The normalized solutions to the Schrédinger equation for the
particle are given by

Un(z) = <z>1/2 sin [mr (Z + ;)} n=172 ..

Let x; be the first node of the wavefunction for n = 3 and x5 be the second node of the
wavefunction for n = 3. Calculate the probability that a measurement of the position
of the particle in the state defined by n = 3 gives a result in the range r; <z < x5.
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The first-excited state normalized wavefunction for a particle of mass m confined to
move in a one-dimensional box on the domain —L/7 < x < 6L/7 is given by
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Show that the wavefunction satisfies the proper boundary conditions for the system,
find the first node of the wavefunction, and calculate the probability that a measure-
ment of the position of the particle lies in the range from x = —L/7 to the first node
of the wavefunction.
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Calculate < ay? > for a particle of mass m having quantum numbers n, and n, in a
two-dimensional box whose sides have lengths L, and L,.
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The normalized wavefunctions for a particle of mass m in a one-dimensional box of
length L on the domain 0 < z < L are given by the set
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Calculate < xyz > for a particle of mass m having quantum numbers n,,n, and n, in
a three-dimensional box whose sides have lengths L, L, and L.
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In three dimensions
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14. The normalized wavefunction for a quantum particle of mass m in a one-dimensional
box of length L on the domain 0 < x < L with quantum number n is given by

Yy () = <i> v sin ﬂLx

Consider a particle of mass m in a two-dimensional box whose sides are of lengths L,
and L,; i.e. the domainis 0 <2 < L, and 0 <y < L,. Suppose the quantum state of
the particle is defined by the quantum numbers in the x and y Cartesian directions by
n; =1 and n, = 2. Calculate (z?y) for the particle.
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