Chemistry 192 Problem Set 2 Spring, 2018

1. The gas phase species NO_2 and N_2O_4 equilibrate according to the reaction

$$N_2O_{4(g)} \rightleftharpoons 2NO_{2(g)},$$

and it is found that at 298K in a reaction vessel of fixed volume the equilibrium concentrations of each species are $[NO_2]=2.17 \times 10^{-3}M$ and $[N_2O_4]=3.64 \times 10^{-4}M$. Under different nonequilibrum conditions in the same vessel at the same temperature, NO₂ and N₂O₄ are added such that their partial pressures are $P_{NO_2}=0.456$ bar and $P_{N_2O_4}=0.789$ bar. Under the nonequilibrium conditions, predict whether the reaction will proceed to the right or left.

2. For the reaction between solid iodine, hydrogen gas and gas-phase hydrogen iodide

$$I_{2(s)} + H_{2(q)} \rightleftharpoons 2HI_{(q)}$$

at 298 K, the equilibrium partial pressures of hydrogen and hydrogen iodide are measured to be respectively $P_{H_2} = 32$. bar and $P_{HI}=4.0$ bar. Suppose an initial nonequilibrium mixture of solid iodine, hydrogen gas and hydrogen iodide is prepared at 298 K in a closed 10.0 L container containing 68. grams of hydrogen gas, 352. grams of hydrogen iodide gas and 500. grams of solid iodine (sufficient to be in excess). Calculate the concentration equilibrium constant K_c for the reaction, and predict whether the reaction will proceed spontaneously to the right or left under the non-equilibrium conditions.

3. At 500.K and a total pressure of 5.57 bar, it is found that the degree of dissociation at equilibrium of gas-phase ammonia according to the reaction

$$\mathrm{NH}_{3(g)} \rightleftharpoons \frac{1}{2}\mathrm{N}_{2(g)} + \frac{3}{2}\mathrm{H}_{2(g)}$$

is $\alpha = 0.564$. In a separate experiment at 500.K, a non equilibrium mixture is prepared by combing 1.00 moles each of gas-phase NH₃, N₂ and H₂ in a 1.00 L flask. Calculate first K_P and then K_c for the ammonia dissociation reaction, and predict the direction of the reaction for the non equilibrium mixture. 4. Consider the reaction at equilibrium

$$\mathrm{PCl}_{5(g)} \rightleftharpoons \mathrm{PCl}_{3(g)} + \mathrm{Cl}_{2(g)}.$$

When a certain amount of $PCl_{5(g)}$ is heated in a 10.0 liter flask at 275.°C, analysis shows that at equilibrium the number of moles of each species is $n_{PCl_5} = 0.151$ mol, $n_{PCl_3} = 0.400$ mol and $n_{Cl_2} = 0.400$ mol. Calculate K_P and K_c for the reaction at 275.°C.

- 5. For the reaction given in problem 4, if for all species at 275.°C, 1.00 moles of each species were placed in the 10.0 L flask, determine whether the reaction would be favored to the left or right.
- 6. Consider the reaction at equilibrium between gas-phase iodine, hydrogen and hydrogen iodide

$$H_{2(g)} + I_{2(g)} \rightleftharpoons 2HI_{(g)}$$

- At 450.C° the concentration equilibrum constant for the reaction is $K_c=50.0$.
- (a) Calculate K_P at 450.C°. Answer: $K_P = 50.0$
- (b) If 2.0 moles each of iodine vapor and hydrogen are placed in a 5.0 L flask, and the gases are allowed to come to equilibrium at 450.C°, calculate the final total pressure and partial pressures of each gas in the container. **Answer**: $P_{tot} = 48$. bar
- 7. For the reaction

$$N_2O_{4(g)} \rightleftharpoons 2NO_{2(g)}$$

it is found that $K_P = 0.171$ at 25.0°C. Calculate the degree of dissociation of N₂O₄ at 25.0C° and total pressures of 1.0 bar and 0.10 bar. **Answer**: $\alpha(1.0 \text{ bar}) = 0.20, \alpha(0.10 \text{ bar}) = 0.55$

8. The degree of dissociation (the fraction of the pure substance that dissociates at equilibrium) of $\text{NOCl}_{(q)}$ at 298K and a total pressure of 2.00 bar according to the reaction

$$\operatorname{NOCl}_{(g)} \rightleftharpoons \operatorname{NO}_{(g)} + \frac{1}{2}\operatorname{Cl}_{2(g)}$$

is $\alpha = 0.00307$. Calculate the pressure equilibrium constant, K_P for the reaction at 298.K.

Answer: $K_P = 1.70 \times 10^{-4}$

9. Predict the effects of increased pressure and temperature on the following reactions at equilibrium.

(a)

$$\mathrm{CO}_{(g)} + \mathrm{H}_2\mathrm{O}_{(g)} \rightleftharpoons \mathrm{CO}_{2(g)} + \mathrm{H}_{2(g)} \qquad \Delta H^\circ = -41.8 \text{ kJ mol}^{-1}$$

(b)

$$2\mathrm{SO}_{2(g)} + \mathrm{O}_{2(g)} \rightleftharpoons 2\mathrm{SO}_{3(g)} \qquad \Delta H^{\circ} = -196.5 \text{ kJ mol}^{-1}$$

(c)

$$\operatorname{CaCO}_{3(s)} \rightleftharpoons \operatorname{Ca}_{(s)} + \operatorname{CO}_{2(g)} \qquad \Delta H^{\circ} = 179.7 \text{ kJ mol}^{-1}$$

10. At 400.K the concentration equilibrium constant for the reaction

$$\mathrm{HCONH}_{2(g)} \rightleftharpoons \mathrm{NH}_{3(g)} + \mathrm{CO}_{(g)}$$

is $K_c = 4.84$. If 10.0 grams of pure gas-phase HCONH₂ are placed in a 10.0 liter flask at 400.K, calculate the total pressure in the flask when equilibrium is reached. Answer: $P_{tot} = 1.47$ bar

11. When metallic lead is added to a solution of $\operatorname{Cr}_{(aq)}^{3+}$ the following reaction occurs

$$\operatorname{Pb}_{(s)} + 2\operatorname{Cr}_{(aq)}^{3+} \rightleftharpoons \operatorname{Pb}_{(aq)}^{2+} + 2\operatorname{Cr}_{(aq)}^{2+}$$

with associated equilibrium constant $K_c = 3.2 \times 10^{-10}$.

- (a) If solid lead is added to a 0.200 M Cr^{3+} aqueous solution, find the final concentrations of all ions in the system. **Answer**: $[\text{Cr}^{3+}]=0.20 \text{ M}$, $[\text{Pb}^{2+}]=1.5 \times 10^{-4} \text{ M}$, $[\text{Cr}^{2+}]=3.0 \times 10^{-4} \text{ M}$
- (b) If 100 mL of water are added to the solution at equilibrium, predict the direction that the equilibrium would be shifted.
- 12. At 145.K the the degree of dissociation of ozone in the gas-phase decomposition reaction

$$\mathcal{O}_{3(g)} \rightleftharpoons \frac{3}{2}\mathcal{O}_{2(g)}$$

at a total pressure of P = 1.00 bar is $\alpha = 0.0221$. Calculate the concentration equilibrium constant K_c of the dissociation reaction. Answer: 1.77×10^{-3}

13. At a temperature of 452K gas-phase isopropyl alcohol dissociates into gas-phase acetone and hydrogen according to the reaction

$$(CH_3)_2CHOH_{(g)} \rightleftharpoons (CH_3)_2CO_{(g)} + H_{2(g)}.$$

At P = 2.00 bar and T = 452K, the degree of dissociation isopropyl alcohol is measured to be $\alpha = 0.182$. Calculate the concentration equilibrium constant K_c for the reaction. **Answer**: 1.82×10^{-3} 14. The gas-phase decomposition of antimony pentachloride into gas-phase antimony trichloride and chlorine gas

$$SbCl_{5(g)} \rightleftharpoons SbCl_{3(g)} + Cl_{2(g)}$$

has a concentration equilibrium constant $K_C = 2.50 \times 10^{-2}$ at a temperature of 521. K. A sample of pure SbCl₅ gas is placed in a reaction vessel of fixed volume at T = 521.K, and when the system attains equilibrium, the total pressure is measured to be 3.51 bar. Calculate the equilibrium degree of dissociation α (i.e. the fraction dissociated) of antimony pentachloride in the reaction vessel. **Answer**: $\alpha = 0.485$

15. The equilibrium behavior of the gas-phase reaction

$$P_{4(g)} \rightleftharpoons 2P_{2(g)}$$

is studied at 1325.K, and the concentration equilibrium constant is measured to be $K_C = 9.08 \times 10^{-4}$. Calculate the equilibrium degree of dissociation α of P_4 at 1325.K and a total pressure of 2.00 bar.

Answer: $\alpha = 0.111$