
Chemistry 432

Problem Set 1

Spring 2019

1. A ball of mass m is tossed into the air at time t = 0 with an initial velocity v0. The ball
experiences a constant acceleration −g from the gravitational attraction of the earth
(g is a positive number). Take the initial location of the ball to be at z = 0.

(a) Show that the velocity of the ball at time t is given by

v = v0 − gt

(b) Show that the height of the ball at time t is given by

z = v0t− 1/2gt2

(c) Use parts “a” and “b” to show that

v2 = v20 − 2gz.

(d) Use part “c” to show that the total energy of the ball is conserved during its
motion.

2. Show that x(t) = cosωt satisfies Newton’s second law for the motion of a harmonic
oscillator in 1 dimension. Evaluate x(t) and the linear momentum of the oscillator at
time t = 0. Show that the sum of the potential and kinetic energies of this oscillator
is a constant for all times.

3. Consider a particle of mass m in a one-dimensional harmonic well subject to the po-
tential energy V = (1/2)mω2x2. Show that

x(t) = A sinωt+B cosωt

is a solution to Newton’s second law for the particle. Introduce the boundary conditions

x(0) = x0 and p(0) = 1

where x0 is a constant having units of length, to solve for the initial constants A and
B. Then show that the sum of the kinetic and potential energies of the particle is
independent of time.
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4.

z=0

•

A classical particle of mass m and charge q is confined to move between the paral-
lel plates of a capacitor as represented above. The z direction in Cartesian coordinates
is taken to be perpendicular to the plates of the capacitor, and the origin of coordi-
nates in the z direction is taken to be the top plate of the capacitor as shown. Between
the capacitor plates the electric field, E is a constant, and the potential energy of the
charged particle is given by V (z) = qEz. Considering only motion in the z direction,
give Newton’s second law of motion for the particle. Show that the solution to the
differential equation associated with Newton’s second law is given by

z(t) = −qEt
2

2m
+ c1t+ c2

where c1 and c2 are constants. Evaluate c1 and c2 for the initial (boundary) conditions
dz/dt = 0 at t = 0 and z = 0 at t = 0.

5. The work function of calcium metal is 2.42 eV. Calculate the kinetic energy of electrons
emitted from calcium when light of wavelength 454.0 nm shines on the surface.

6. Find the de Broglie wavelength for an electron, a proton and a 100. g bowling ball each
having 2. eV of kinetic energy. Find the uncertainty in the position of each particle
taking ∆p = p.

7. A one-dimensional electron is bound by a box to a region of space having length 1.0 Å.
A second electron is bound by a similar box but of length 2.0 Å. Use the uncertainty
principle to estimate the ratio of the zero-point kinetic energies of the two electrons.

8. Consider the expression for the energy of a harmonic oscillator of mass m and angular
frequency ω

E =
1

2
mω2x2 +

p2

2m
.

Assuming the uncertainties in the coordinate x and momentum p to be x and p; i.e.
write

x ≈ ∆x p ≈ ∆p
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and using the minimum uncertainty relation

∆x∆p =
h̄

2

minimize E with respect to ∆x. Show that the energy evaluated at that value of ∆x
is E = h̄ω/2. As shown later this semester, the value of the energy at the minimum
matches the exact ground state energy of the quantum oscillator.

9. Consider a quantum system with total energy given by the expression

E =
p2

2m
+ αx 0 ≤ x <∞

with α a constant. Use the uncertainty principle to estimate the ground-state energy
of the system.

10. The expression for the energy of a one-dimensional hydrogen atom composed of a
proton at a fixed location in space and a moving electron having mass m, coordinate
x and momentum p is given by

E =
p2

2m
− K

x
where K is a collection of constants including the charges and other information unim-
portant in the current problem. Use the uncertainty principle assuming ∆p ∼ p and
∆x ∼ x and minimize the energy E to estimate the ground-state energy of the one-
dimensional hydrogen atom.

11. When light of wavelength 4000 Å shines on the surface of barium metal, electrons of
kinetic energy .63 ev are emitted. Calculate the wavelength of light needed so that
photoelectrons of de Broglie wavelength 10 Å are emitted from the surface of barium.

12. When light of wavelength 5250Å shines on a particular surface of tungsten metal, the
ejected electrons are found to have a de Broglie wavelength of 1.69 ×10−9 m. Calculate
the kinetic energies of the ejected electrons if light of frequency 5.00 ×1014 s−1 shines
on the same surface.

13. The work function of cesium metal is 2.10 eV. Calculate the de Broglie wavelength
of photoelectrons emitted from the surface of Cs when light of wavelength 307.1 nm
interacts with the surface.

14. When electromagnetic radiation of frequency ν = 1.50× 1015s−1 shines on the surface
of metallic nickel, electrons are emitted with deBroglie wavelength 11.2Å. When radi-
ation of the same frequency shines on sodium metal, the kinetic energy of the emitted
electrons is 3.93 eV. Let νmin be the minimum frequency of light required such that
electrons are emitted from the surface of metallic nickel. Calculate the kinetic energy
of electrons emitted from the surface of sodium metal if radiation of frequency νmin

shines on sodium.
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15. When light of a certain wavelength interacts with the surface of samarium (Sm) metal,
electrons of deBroglie wavelength λdb = 1.932 × 10−9 m are ejected. When light of
the same wavelength interacts with the surface of lithium (Li) metal, the deBroglie
wavelength of each of the emitted electrons is λdb = 2.719 × 10−9 m. Given the work
function of lithium is φLi = 2.90 eV, calculate φSm, the work function of samarium,
and calculate the wavelength of the light that interacts with the metal surfaces.
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