Experiment 2 The Diffusion of Salt Solutions into Pure Water

Kaveendi Chandrasiri
kchandrasiri@chm.uri.edu
Office Hour: Thursdays 11 a.m.
Beaupre 315
(or by appointment)

Purpose

- Measure the molecular diffusion rate due to change in solution concentration.
- Use laser light refraction to measure the extent of diffusion as a function of time.
- To visually and mathematically represent this data in a meaningful manner (graphs & tables).

Theory

- Diffusion- the net movement of solutes (e.g., salt) from a region of high concentration to a region of low concentration.
- Brownian motion (random walk) of solute molecules causes diffusion.
- An initially sharp boundary of concentration difference of salt in water will blur over time.
- The sharpness of the concentration difference (c gradient) is measured by the extent of bending of laser light in this lab.

Concentration Dependence on Depth and Time

- 1. Left: Prepare salt solution at bottom, water on top. Sharp concentration gradient
- 2. Middle: Diffusion leads blurring of boundary.
- 3. Right: Equilibrium state: uniform concentration.

Measuring Concentration via Laser

• Refractive Index "n" is proportional to the salt concentration c.

$$\frac{\partial c}{\partial x} = K' \frac{\partial n}{\partial x}$$

- Light ray bends towards high n region of the interface if there is a gradient of the refractive index. .
- The amount of downward bending of laser light is proportional to the concentration gradient at the spot where the light ray passes through.

Angle of light bending down
$$\propto \frac{\partial c}{\partial x} = K' \frac{\partial n}{\partial x}$$

Concentration Dependence Continued

• The derivative of this sigmoidal curve is a Gaussian distribution of the general form: $f(x) = e^{-\frac{x^2}{2\sigma^2}}$

- The width of a Gaussian distribution is proportional to " σ " in the equation. The width " σ " increases with time t.
- In this lab we experimentally determine the functional dependence of $\sigma \propto t^{\alpha}$

Moveoninc.com

Part I: The "Riddle"

You have two unmarked 50 mL beakers; one contains only distilled water and the other contains a salt solution, but you do not know which beaker is which. The only tool you have to help you is a glass pipette. How can you tell which beaker contains which liquid?

Reminder:

We never put unknown (or known) solutions into our bodies while in a chemistry laboratory.

Part II: Experimental Procedure

- 1.
- Prepare 25 mL of a 2 M NaCl salt solution using distilled water. Remember to **thoroughly mix** this solution.
- Place a clean, dry cuvette on a laboratory jack at the edge of the lab bench. Place a He-Ne laser on bricks pointing through (1/3 from the bottom of) the cuvette at the wall. Attach a piece of graph paper to the wall with the laser pointing near the center, 1/3 from the top of the graph paper.
- Fill 1/3 of cuvette with your salt solution up to the laser point. Adjust the height of the laboratory jack so that the laser hits the meniscus of the salt solution, making a vertical line of laser light appear on the graph paper.

 Trace this line.
- 4.

Using a ring stand & clamp, place a glass rod angled at $\sim 45^{\circ}$ in the path of the laser light between the laser & cuvette. A $\sim 45^{\circ}$ angle line of laser light should appear on the graph paper. **Trace this line.**

Part II: Experimental Procedure

- - Gently add distilled water to the cuvette by slowly pipetting the water over a floating cork, being careful to not disturb the interface. Start the stopwatch when you begin to add the distilled water (t=0). This process will take several minutes.
 - Once a stable deep curve appears entirely on your graph paper, trace the curve & record the time on the graph paper.
 - Trace new lines at 5 minute intervals for 40 minutes alternating between at least three colored pens (i.e. red, green, blue, red, green, etc.); record times.

Part II: Experimental Procedure Apparatus

Part III: Data Analysis

Example of Traced Deflection Curves

Diagram for Data Analysis

Construct data table from each curve

Measure X' and $\Delta X'$ at 11 points on each curve.

X'	ΔX'	
-	0	
-	+	
-	+	
-	+	
ı	+	
+	Max	
+	+	
+	+	
+	+	
+	+	
+	0	

Two points with $\Delta X' = 0$

One point with ΔX ' at maximum.

8 points with X' Distributed on the Curve.

Part III: Data Analysis

Create plots from Tables.

- One table per traced line
- Plot $y=\Delta X'$ vs. x=X'

X'	ΔΧ΄	
-	0	
-	+	
-	+	
-	+	
-	+	
+	Max	
+	+	
+	+	
+	+	
+	+	
+	0	

Create graphs from tables

- By hand (no computers)
- Gaussian curves
 - One per table
- Width (w) is the full width at half the height (maximum).

Part III: Data Analysis

Create table from graphs

- Table of w, t, ln w, & ln t
- One row for each traced line

t	ln w	ln t
		t In w

Create graph from table

- Plot ln w vs. ln t (one per table) using excel
- Get the linear regression trend line using excel
- Determine slope

Part III: Data Analysis Determining Standard Deviation

- The width of a Gaussian (and consequently standard deviation) curve is time dependent.
- From Fick's Law, we see

$$\frac{\partial c}{\partial x} \propto \Delta x(x) = A e^{-x^2/2\sigma^2(t)}$$
and

- $w \propto \sigma(t) = Kt^{\alpha}$ We solve for α via:
- - Notice similarities to

$$\ln w = \alpha \ln t + \ln K \\
y = mx + b$$

Part IV: Laboratory Report

- 1. A cover page giving your name, the title of the experiment, the date experiment was performed, and the name of your laboratory partner.
- 2. Your procedure signed by your TA.
- 3. A description of how you solved the "riddle." Be sure to include a description of the physical principles used to solve the "riddle." These principles should of course relate to the rest of the experiment and be communicated in complete grammatically correct sentences.
- 4. The raw data [the original or a **COLOR** copy of the graph paper signed by your TA].
- 5. A table of 10 values of X' and $\Delta X'$ calculated from the graph paper for each time.
- 6. Graphs of ΔX as a function of X for each time.
- 7. A grammatically correct statement (in words) of the precise definition you used for the width w for each graph.
- 8. A table of w, t, $\ln w$, $\ln t$.

Part IV: Laboratory Report

- 9. Plot the values of ln w as a function of ln t using the calculated points.
- 10. Draw a straight best fit line to illustrate the linear relationship between ln *w* and ln *t* (do not just connect end points).
- 11. Determine the slope of your best fit line. Round off the value of your slope to the nearest half integer.
- 12. Express the dependence of the width as a power law. It is important to recognize that the width w is proportional to the standard deviation (σ) of Gaussian curves.
- 13. Summary and Discussion: Briefly summarize in grammatically correct sentences the experiment and your findings. Include *all* key numerical results (e.g. power law). Examine Eq. 17.18 of the CHM 431 textbook, and compare your measured value of α with the power law of the mean squared displacement in diffusion processes as a function of time.
 - 14. Upload the electronic copy of your lab report.

Few things to remember

• Make sure to dispose the salt solution in to the labeled waste container

Be careful with your eyes

• Next week meet in room 472 for the pre lab lecture on error analysis