Chemistry 431
 Problem Set 9
 Fall 2023

1. Use Table 4.1 of the text to calculate the equilibrium constant of the reaction $\mathrm{NO}_{(g)}+\frac{1}{2} \mathrm{O}_{2(g)} \rightleftharpoons \mathrm{NO}_{2(g)}$ at $25 .{ }^{\circ} \mathrm{C}$ and $35 .{ }^{\circ} \mathrm{C}$.
2. Consider the reaction

$$
\mathrm{PCl}_{5(g)} \longrightarrow \mathrm{PCl}_{3(g)}+\mathrm{Cl}_{2(g)}
$$

(a) Show that if one starts with pure PCl_{5} and a fraction, α, dissociates, the reaction quotient will be given by

$$
Q_{P}=\frac{\alpha^{2}}{\left(1-\alpha^{2}\right)} \frac{P}{P^{\ominus}}
$$

(b) At $250 .{ }^{\circ} \mathrm{C}$ the equilibrium constant for the reaction is $K_{P}=1.78$. Calculate α for $P=0.1$ bar and $P=1.0$ bar at equilibrium.
(c) Calculate $\Delta_{r, m} G$ for an equimolar mixture at 1 bar pressure and $250 .{ }^{\circ} \mathrm{C}$.
(d) Calculate $\Delta_{r, m} G$ for 20 per cent dissociation at $250 .{ }^{\circ} \mathrm{C}$ and 1 bar pressure.
3. The following results were obtained for the degree of dissociation, α, of CO_{2} in the reaction
$\mathrm{CO}_{2(g)} \longrightarrow \mathrm{CO}_{(g)}+\frac{1}{2} \mathrm{O}_{2(g)}$
at a pressure of 1.0 bar:

$\mathrm{T}\left({ }^{\circ} \mathrm{K}\right)$	α
1000.	$2 . \times 10^{-7}$
1400.	1.27×10^{-4}
2000.	1.55×10^{-2}

Calculate $\Delta S_{r, m}^{\ominus}$ for the reaction at $1400 .{ }^{\circ} \mathrm{K}$.
4. Gvien the following table for the thermodynamic properties of bromine at 298 K

	$\Delta_{f, m} H^{\ominus}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	$\Delta_{f, m} G^{\ominus}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$
$\operatorname{Br}_{2(\ell)}$	0	0
$\operatorname{Br}_{2(g)}$	30.9	3.1
$\operatorname{Br}_{(g)}$	111.9	82.4

calculate the degree of dissociation α of gas-phase Br_{2} at 2000.K and a total pressure of 5.00 bar according to the reaction

$$
\mathrm{Br}_{2(g)} \rightleftharpoons 2 \mathrm{Br}_{(g)}
$$

5. Hydrogen bromide dissociates according to the reaction
$\operatorname{HBr}_{(g)} \longrightarrow \frac{1}{2} \mathrm{H}_{2(g)}+\frac{1}{2} \mathrm{Br}_{2(g)}$
Use Table 4.1 of the text to find the degree of dissociation of HBr at $35 .{ }^{\circ} \mathrm{C}$ and 2.0 bar pressure.
6. Hydrogen iodide gas dissociates according to the reaction
$\mathrm{HI}_{(g)} \longrightarrow \frac{1}{2} \mathrm{H}_{2(g)}+\frac{1}{2} \mathrm{I}_{2(g)}$
At $0 .{ }^{\circ} \mathrm{C}$ and 1.0 bar pressure, the degree of dissociation is $\alpha=.40$, and at $100 .{ }^{\circ} \mathrm{C}, \alpha$ $=.88$. Assuming $\Delta_{r, m} H^{\ominus}$ to be independent of temperature, calculate $\Delta_{r, m} H^{\ominus}$, $\Delta_{r, m} G^{\ominus}$ and $\Delta_{r, m} S^{\ominus}$ for the reaction at $0 .{ }^{\circ} \mathrm{C}$.
7. The gas NO_{2} dissociates according to the reaction
$\mathrm{NO}_{2(g)} \longrightarrow \mathrm{NO}_{(g)}+\frac{1}{2} \mathrm{O}_{2(g)}$
One mole of $\mathrm{NO}_{2(g)}$ is placed in a vessel, and the gas is allowed to come to equilibrium such that the total pressure is kept fixed at 1.0 bar. The ratio $P_{N O} / P_{N O 2}$ is measured as a function of temperature and equals .872 at 700 K and 2.50 at 800 K . Calculate $\Delta_{r, m} H^{\ominus}, \Delta_{r, m} G^{\ominus}$ and $\Delta_{r, m} S^{\ominus}$ for the reaction at 700 K.
8. The standard molar enthalpy of formation and molar Gibbs free energy of formation of solid sodium hydride (NaH) at 298 K are given by

$$
\Delta_{f, m} H^{\ominus}=-56.3 \mathrm{~J} \mathrm{~mol}^{-1} \quad \Delta_{f, m} G^{\ominus}=-33.5 \mathrm{~J} \mathrm{~mol}^{-1} .
$$

Given the reaction

$$
\mathrm{NaH}_{(s)} \longrightarrow \mathrm{Na}_{(s)}+\frac{1}{2} \mathrm{H}_{2(g)}
$$

Calculate the temperature at which the pressure of hydrogen in equilibrium with $\mathrm{NaH}_{(s)}$ and $\mathrm{Na}(s)$ is 0.01 bar.
9. Solid ammonium chloride at $600 . \mathrm{K}$ is allowed to come to equilibrium with equimolar amounts of gas phase hydrogen chloride (HCl) and ammonia $\left(\mathrm{NH}_{3}\right)$ according to the reaction

$$
\mathrm{NH}_{4} \mathrm{Cl}_{(s)} \rightleftharpoons \mathrm{NH}_{3(g)}+\mathrm{HCl}_{(g)}
$$

Given the table of thermodynamic data valid at 298.K

Substance	$\Delta_{f, m} H^{\ominus} \mathrm{kJ} \mathrm{mol}^{-1}$	$\Delta_{f, m} G^{\ominus} \mathrm{kJ} \mathrm{mol}^{-1}$
$\mathrm{NH}_{3(g)}$	-45.9	-16.5
$\mathrm{HCl}_{(g)}$	-92.3	-95.3
$\mathrm{NH}_{4} \mathrm{Cl}_{(s)}$	-314.4	-202.9

calculate the partial pressures of ammonia and hydrogen chloride gas in equilibrium with the solid ammonium chloride at 600 K .
10. The equilibrium pressure of hydrogen gas in the presence of solid lithium hydride and lithium metal according to the reaction

$$
\mathrm{LiH}_{(s)} \rightleftharpoons \mathrm{Li}_{(s)}+\frac{1}{2} \mathrm{H}_{2(g)}
$$

is 0.0213 bar at 1000 . K and 0.801 bar at 1200 . K. Assuming the enthalpy change for the process is temperature independent, calculate the equilibrium pressure of $\mathrm{H}_{2(g)}$ in the presence of of solid LiH and Li at 1100. K.
11. When gas phase molecular iodine dissociates according to the reaction

$$
\mathrm{I}_{2(g)} \longrightarrow 2 \mathrm{I}_{(g)}
$$

at a total pressure of 0.50 bar, the degree of dissociation of the molecular iodine at equilibrium is $\alpha=3.45 \times 10^{-2}$ at 1000 K and $\alpha=0.155$ at 1200 K . Assuming the standard enthalpy change for the reaction is independent of temperature, calculate $\Delta_{r, m} H^{\ominus}, \Delta_{r, m} G^{\ominus}$ and $\Delta_{r, m} S^{\ominus}$ for the dissociation reaction at 1000 K .
12. Phosphorous trihydride dissociates according to the gas-phase reaction

$$
\mathrm{PH}_{3(g)} \rightleftharpoons \frac{1}{4} \mathrm{P}_{4(g)}+\frac{3}{2} \mathrm{H}_{2(g)} .
$$

Measurements of the amount of phosphorous trihydride at equilibrium find that the degree of dissociation is $\alpha=0.934$ at $25.0^{\circ} \mathrm{C}$ and $\alpha=0.950$ at $50.0^{\circ} \mathrm{C}$ when the total pressure in each case is 2.00 bar. Calculate the entropy change for the reaction at $25.0^{\circ} \mathrm{C}$ assuming the enthalpy change for the reaction is temperature independent.
13. Liquid nitric acid dissociates into liquid-phase water and gas-phase nitrogen dioxide and oxygen according to the reaction

$$
\mathrm{HNO}_{3(\ell)} \rightleftharpoons \frac{1}{2} \mathrm{H}_{2} \mathrm{O}_{(\ell)}+\mathrm{NO}_{2(g)}+\frac{1}{4} \mathrm{O}_{2(g)}
$$

Pure nitric acid is injected into an evacuated flask, and it is found that at equilibrium, the total pressure of the gas phase species is 3.92×10^{-2} bar at 323 . K and $2.77 \times$ 10^{-2} bar at 308. K. Assuming the enthalpy change for the reaction is independent of temperature, calculate the entropy change $\Delta_{r, m} S^{\ominus}$ for the reaction at $308 . \mathrm{K}$.
14. At $750 . \mathrm{K}$ the pressure of atomic $\mathrm{I}_{(g)}$ in equilibrium with solid iodine according to the reaction

$$
\mathrm{I}_{2(s)} \rightleftharpoons 2 \mathrm{I}_{(g)}
$$

is 0.310 bar, and the pressure of atomic iodine associated with the same reaction at 850.K is 0.844 bar. Calculate the pressure of atomic, gas-phase iodine in equilibrium with solid I_{2} at 800.K.
15. Arsine $\left(\mathrm{AsH}_{3}\right)$ gas dissociates into solid arsenic and hydrogen gas according to the reaction

$$
\mathrm{AsH}_{3(g)} \rightleftharpoons \mathrm{As}_{(s)}+\frac{3}{2} \mathrm{H}_{2(g)}
$$

At a total pressure of 3.00 bar, the equilibrium degrees of dissociation of arsine are found to be $\alpha=9.2 \times 10^{-5}$ at 223 K and $\alpha=6.9 \times 10^{-6}$ at 250 K . Assuming the enthalpy of the reaction is independent of temperature, calculate $\Delta_{r, m} S^{\ominus}$ for the reaction at 250 K .
16. For the dissociation reaction of gas-phase tungsten hexafluoride into liquid tungsten and fluorine gas

$$
\mathrm{WF}_{6(g)} \rightleftharpoons \mathrm{W}_{(\ell)}+3 \mathrm{~F}_{2(g)}
$$

when the total pressure is 2.00 bar, the degree of dissociation of $\mathrm{WF}_{6(g)}$ is measured to be $\alpha=0.221$ at $T=5650 \mathrm{~K}$ and $\alpha=0.249$ at $T=5700 \mathrm{~K}$. Calculate the entropy change for the reaction at 5650 . K.

