Chemistry 431
 Problem Set 7
 Fall 2023
 Solutions

1. Show that $G=A+P V$.

Answer:

$$
\begin{gathered}
G=A+P V \\
=U-T S+P V \\
=H-T S
\end{gathered}
$$

2. For the reaction
$\mathrm{CH}_{4(g)}+2 \mathrm{O}_{2(g)} \longrightarrow \mathrm{CO}_{2(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(l)}$
use Tables 4.1 and 4.2 to determine at $25^{\circ} \mathrm{C}$
(a) The amount of heat liberated per mole at constant pressure; Answer:

$$
q_{m}=\Delta_{r, m} H^{\ominus}=[2(-285.8)+(-393.5)-(-74.6)] \mathrm{kJ} \mathrm{~mol}^{-1}=-890.5 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

(b) The maximum amount of work obtainable from the reaction per mole;

Answer:

$$
\begin{gathered}
\Delta_{r, m} G^{\ominus}=[2(-237.1)+(-394.4)-(-50.5)] \mathrm{kJ} \mathrm{~mol}^{-1}=-818.1 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\Delta_{r, m} A^{\ominus}=\Delta_{r, m} G^{\ominus}-\Delta(P V) \\
\Delta_{r, m} A^{\ominus}=\Delta_{r, m} G^{\ominus}-R T \Delta n_{\text {gas }} \\
=-818100 \mathrm{~J} \mathrm{~mol}^{-1}-\left(8.3144 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(298 \mathrm{~K})(-2) \\
=-813.1 \mathrm{~kJ} \mathrm{~mol}^{-1}=\text { maximum total work }
\end{gathered}
$$

(c) The maximum amount of non-PV work obtainable from the reaction per mole. Answer:

$$
\text { maximum non }-P V \text { work }=\Delta_{r, m} G^{\ominus}=-818.1 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

3. Three moles of an ideal diatomic gas at 1.0 bar pressure and a temperature of $25 .{ }^{\circ} \mathrm{C}$ are taken through the following series of steps:
(a) a free adiabatic expansion into a vacuum to double its volume;
(b) a constant volume heating to $100 .{ }^{\circ} \mathrm{C}$;
(c) a reversible adiabatic compression to the initial volume;
(d) a cooling at constant pressure to $25 .{ }^{\circ} \mathrm{C}$.

Calculate $\Delta U, \Delta H, \Delta S, \Delta A, \Delta G, q, w$, and $\int \frac{d q_{s y s}}{T}$, for the overall process "a" + "b" +"c" +"d."
Answer:

$$
\Delta T=0 \quad \text { so that } \quad \Delta U=\Delta H=0
$$

(a)

$$
\text { inital conditions : } \quad P=1 \text { bar } \quad T=298 \mathrm{~K} \quad V=74.33 \mathrm{~L}
$$

(b)

$$
\text { after step "a" : } T=298 \mathrm{~K} \quad V=148.65 \mathrm{~L} \quad P=0.50 \mathrm{bar}
$$

(c)

$$
\text { after step "b" : } T=373 \mathrm{~K} \quad V=148.65 \mathrm{Ll} \quad P=0.63 \mathrm{bar}
$$

(d) after step "c":

$$
\begin{gathered}
T_{1} V_{1}^{\gamma-1}=T_{2} V_{2}^{\gamma-1} \\
(373 \mathrm{~K})(148.65)^{2 / 5}=T(73.33)^{2 / 5} \\
T=495 \mathrm{~K} \\
V=73.33 \mathrm{~L} \quad P=1.68 \mathrm{bar}
\end{gathered}
$$

(e)

$$
\text { final state : } P=1.68 \mathrm{bar} \quad T=298 \mathrm{~K} \quad V=44.24 \mathrm{~L}
$$

Overall

$$
\begin{gathered}
\Delta S=n R \ln \frac{V_{f}}{V_{i}}=(3 \mathrm{~mol})\left(8.3144 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \ln \frac{44.24}{73.33}=-12.60 \mathrm{~J} \mathrm{~K}^{-1} \\
\Delta A=\Delta U-T \Delta S=-T \Delta S=\Delta G=-298 \mathrm{~K}\left(-12.60 \mathrm{~J} \mathrm{~K}^{-1}\right)=3756 \mathrm{~J} \\
q_{a}=0 \\
q_{b}=\frac{5}{2}(3 \mathrm{~mol})\left(8.3144 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(75 \mathrm{~K})=4677 \mathrm{~J} \\
q_{c}=0
\end{gathered}
$$

$$
\begin{gathered}
q_{d}=\frac{7}{2}(3 \mathrm{~mol})\left(8.3144 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(298 \mathrm{~K}-495 \mathrm{~K})=-17198 \mathrm{~J} \\
q=q_{a}+q_{b}+q_{c}+q_{d}=-12521 \mathrm{~J} \\
w=-q=12521 \mathrm{~J} \\
\int \frac{d q_{a}}{T}=0 \\
\int \frac{d q_{b}}{T}=\int_{298}^{373} \frac{C_{V} d T}{T} \\
=\frac{5}{2}(3 \mathrm{~mol})\left(8.3144 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \ln \frac{373}{298}=14 . \mathrm{J} \mathrm{~K}^{-1} \\
\int \frac{d q_{c}}{T}=0 \\
\int \frac{d q_{d}}{T}=C_{P} \ln \frac{T_{f}}{T_{i}} \\
=\frac{7}{2}(3 \mathrm{~mol})(8.3144 \mathrm{~J} \mathrm{~mol} \\
-1 \\
\left.\mathrm{~K}^{-1}\right) \ln \frac{298}{495}=-44.30 \mathrm{~J} \mathrm{~K}^{-1} \\
\int \frac{d q}{T}=\int \frac{d q_{a}}{T}+\int \frac{d q_{b}}{T}+\int \frac{d q_{c}}{T}+\int \frac{d q_{d}}{T}=-30.30 \mathrm{~J} \mathrm{~K}^{-1}
\end{gathered}
$$

Notice that $\Delta S>\int \frac{d q}{T}$ as it must.
4. A certain gas obeys the equation of state

$$
P(V-n b)=n R T
$$

where b is a constant independent of P, T, V and n. Show that

$$
\left(\frac{\partial U}{\partial P}\right)_{T}=0
$$

for this particular gas.
Answer:

$$
\begin{gathered}
d U=T d S-P d V \\
\left(\frac{\partial U}{\partial P}\right)_{T}=T\left(\frac{\partial S}{\partial P}\right)_{T}-P\left(\frac{\partial V}{\partial P}\right)_{T} \\
d G=-S d T+V d P \\
\left(\frac{\partial S}{\partial P}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{P} \\
\left(\frac{\partial U}{\partial P}\right)_{T}=-T\left(\frac{\partial V}{\partial T}\right)_{P}-P\left(\frac{\partial V}{\partial P}\right)_{T}
\end{gathered}
$$

$$
\begin{gathered}
V=n b+\frac{n R T}{P} \\
\left(\frac{\partial V}{\partial T}\right)_{P}=\frac{n R}{P} \quad\left(\frac{\partial V}{\partial P}\right)_{T}=-\frac{n R T}{P^{2}} \\
\left(\frac{\partial U}{\partial P}\right)_{T}=-T \frac{n R}{P}-P\left(-\frac{n R T}{P^{2}}\right)=0
\end{gathered}
$$

5. A certain gas obeys the van der Waals equation of state

$$
P=\frac{n R T}{V-n b}-\frac{a n^{2}}{V^{2}}
$$

where a and b are numerical constants. Derive an expression for $(\partial U / \partial S)_{T}$ for the van der Waals gas in terms of a, b, V, n and R.
Answer:

$$
\left.\begin{array}{c}
d U=T d S-P d V \\
\left(\frac{\partial U}{\partial S}\right)_{T}=T-P\left(\frac{\partial V}{\partial S}\right)_{T} \\
d A=-S d T-P d V \quad\left(\frac{\partial V}{\partial S}\right)_{T}=\left(\frac{\partial T}{\partial P}\right)_{V} \\
\left(\frac{\partial U}{\partial S}\right)_{T}=T-P\left(\frac{\partial T}{\partial P}\right)_{V} \\
\left(\frac{\partial P}{\partial T}\right)_{V}=\frac{n R}{V-n b} \quad \text { or } \quad\left(\frac{\partial T}{\partial P}\right)_{V}=\frac{V-n b}{n R} \\
\left(\frac{\partial U}{\partial S}\right)_{T}=T-\frac{P(V-n b)}{n R}
\end{array}=\frac{P(V-n b)}{n R}+\frac{a n^{2}}{V^{2}} \frac{V-n b}{n R}-\frac{P(V-n b)}{n R}\right) ~=\frac{a n^{2}}{V^{2}} \frac{V-n b}{n R} \quad .
$$

6. Show that

$$
\left(\frac{\partial C_{P}}{\partial P}\right)_{T}=-T\left(\frac{\partial^{2} V}{\partial T^{2}}\right)_{p}
$$

Answer:

$$
\begin{aligned}
C_{P} & =\left(\frac{\partial H}{\partial T}\right)_{P} \\
\left(\frac{\partial C_{P}}{\partial P}\right)_{T} & =\left(\frac{\partial}{\partial P}\left(\frac{\partial H}{\partial T}\right)_{P}\right)_{T}
\end{aligned}
$$

$$
\left(\frac{\partial}{\partial T}\left(\frac{\partial H}{\partial P}\right)_{T}\right)_{P}
$$

But

$$
\begin{gathered}
d H=T d S+V d P \\
\left(\frac{\partial H}{\partial P}\right)_{T}=T\left(\frac{\partial S}{\partial P}\right)_{T}+V \\
d G=-S d T+V d P \\
\left(\frac{\partial S}{\partial P}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{P}
\end{gathered}
$$

Then

$$
\left(\frac{\partial H}{\partial P}\right)_{T}=V-T\left(\frac{\partial V}{\partial T}\right)_{P}
$$

and

$$
\begin{aligned}
\left(\frac{\partial C_{P}}{\partial P}\right)_{T} & =\left(\frac{\partial}{\partial T}\left(V-T\left(\frac{\partial V}{\partial T}\right)_{P}\right)\right)_{P} \\
=\left(\frac{\partial V}{\partial T}\right)_{P} & -\left(\frac{\partial V}{\partial T}\right)_{P}-T\left(\frac{\partial^{2} V}{\partial T^{2}}\right)_{P} \\
& =-T\left(\frac{\partial^{2} V}{\partial T^{2}}\right)_{P}
\end{aligned}
$$

7. For an ideal gas, show that

$$
\left(\frac{\partial P}{\partial V}\right)_{S}=-\gamma\left(\frac{P}{V}\right)
$$

where $\gamma=C_{P} / C_{V}$.

Answer:

Simple Solution: For an ideal gas along an adiabatic reversible path

$$
P V^{\gamma}=\mathrm{constant}
$$

or

$$
\begin{gathered}
P=\frac{\text { constant }}{V^{\gamma}} \quad(\text { constant S }) \\
\begin{aligned}
\left(\frac{\partial P}{\partial V}\right)_{S} & =-\gamma(\text { constant }) V^{-\gamma-1} \\
& =-\frac{\gamma P V^{\gamma}}{V^{\gamma+1}} \\
& =-\gamma \frac{P}{V}
\end{aligned}
\end{gathered}
$$

Long Solution:

$$
\begin{gathered}
d H=T d S+V d p \\
\left(\frac{\partial H}{\partial V}\right)_{S}=V\left(\frac{\partial P}{\partial V}\right)_{S}
\end{gathered}
$$

For an ideal gas

$$
d H=C_{P} d T
$$

so that

$$
\left(\frac{\partial H}{\partial V}\right)_{S}=C_{P}\left(\frac{\partial T}{\partial V}\right)_{S}
$$

or

$$
\left(\frac{\partial P}{\partial V}\right)_{S}=\frac{C_{P}}{V}\left(\frac{\partial T}{\partial V}\right)_{S}
$$

But

$$
\left(\frac{\partial T}{\partial V}\right)_{S}\left(\frac{\partial V}{\partial S}\right)_{T}\left(\frac{\partial S}{\partial T}\right)_{V}=-1
$$

so that

$$
\left(\frac{\partial T}{\partial V}\right)_{S}=-\frac{(\partial S / \partial V)_{T}}{(\partial S / \partial T)_{V}}
$$

Now

$$
\begin{aligned}
& d A=-S d T-P d V \\
& \left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V}
\end{aligned}
$$

For an ideal gas

$$
d S=\frac{C_{V} d T}{T} \quad \text { constant } V
$$

so that

$$
\left(\frac{\partial S}{\partial T}\right)_{V}=\frac{C_{V}}{T}
$$

Then

$$
\left(\frac{\partial T}{\partial V}\right)_{S}=-T \frac{(\partial P / \partial T)_{V}}{C_{V}}
$$

and

$$
\left(\frac{\partial P}{\partial V}\right)_{S}=-\frac{C_{P}}{V} \frac{T}{C_{V}}\left(\frac{\partial P}{\partial T}\right)_{V}
$$

But for an ideal gas

$$
\left(\frac{\partial P}{\partial T}\right)_{V}=\frac{n R}{V}
$$

and

$$
\left(\frac{\partial P}{\partial V}\right)_{S}=-\frac{C_{P}}{C_{V}} \frac{T}{V} \frac{n R}{V}=-\gamma \frac{P}{V}
$$

8. A certain gas obeys the equation of state

$$
P(V-n b)=n R T
$$

where b is a numerical constant. Derive an expression for $(\partial H / \partial S)_{T}$ for the gas.
Answer:

$$
\begin{gathered}
d H=T d S+V d P \\
\left(\frac{\partial H}{\partial S}\right)_{T}=T+V\left(\frac{\partial P}{\partial S}\right)_{T} \\
d G=-S d T+V d P \\
\left(\frac{\partial P}{\partial S}\right)_{T}=-\left(\frac{\partial T}{\partial V}\right)_{P} \\
\left(\frac{\partial H}{\partial S}\right)_{T}=T-V\left(\frac{\partial T}{\partial V}\right)_{P} \\
T=\frac{P(V-n b)}{n R} \quad\left(\frac{\partial T}{\partial V}\right)_{P}=\frac{P}{n R} \\
\left(\frac{\partial H}{\partial S}\right)_{T}=T-V \frac{P}{n R}=\frac{P V}{n R}-\frac{P b}{R}-\frac{P V}{n R}=-\frac{P b}{R}
\end{gathered}
$$

9. The work done on a rubber band when it is stretched by an infinitesimal length $d \ell$ owing to an applied force, F, is given by $d w=F d \ell$.
(a) Neglecting the volume change on stretching, show that

$$
\left(\frac{\partial U}{\partial \ell}\right)_{T}=F-T\left(\frac{\partial F}{\partial T}\right)_{\ell}
$$

Answer:

$$
\begin{aligned}
d U & =T d S+F d \ell \\
\left(\frac{\partial U}{\partial \ell}\right)_{T} & =T\left(\frac{\partial S}{\partial \ell}\right)_{T}+F
\end{aligned}
$$

As usual define $A=U-T S$. Then

$$
d A=-S d T+F d \ell
$$

and

$$
\left(\frac{\partial S}{\partial \ell}\right)_{T}=-\left(\frac{\partial F}{\partial T}\right)_{\ell}
$$

so that

$$
\left(\frac{\partial U}{\partial \ell}\right)_{T}=F-T\left(\frac{\partial F}{\partial T}\right)_{\ell}
$$

(b) Experimentally, the force at constant length is given by

$$
F=\gamma T
$$

where γ is a constant. Show that

$$
\left(\frac{\partial U}{\partial \ell}\right)_{T}=0
$$

Answer:

$$
\begin{gathered}
F=\gamma T \quad(\text { constant } \ell) \\
\left(\frac{\partial F}{\partial T}\right)_{\ell}=\gamma \\
\left(\frac{\partial U}{\partial \ell}\right)_{T}=\gamma T-\gamma T=0
\end{gathered}
$$

(c) Since stretching orders the rubber polymer, it can be shown that

$$
(\partial S / \partial F)_{T}<0
$$

i.e. there is an entropy decrease upon stretching. From this sign deduce the sign of $(\partial \ell / \partial T)_{F}$. Use this to predict what will happen to a rubber band with a weight hanging from it, if the temperature of the rubber is raised.

Answer:

Define

$$
\begin{gathered}
\bar{G}=A-F \ell \\
d \bar{G}=d A-F d \ell-\ell d F \\
=-S d T+F d \ell-F d \ell-\ell d F \\
=-S d T-\ell d F \\
\left(\frac{\partial S}{\partial F}\right)_{T}=\left(\frac{\partial \ell}{\partial T}\right)_{F}
\end{gathered}
$$

Because

$$
\left(\frac{\partial S}{\partial F}\right)_{T}<0
$$

it follows that

$$
\left(\frac{\partial \ell}{\partial T}\right)_{F}<0
$$

Then if T increases, ℓ decreases and the rubber band contracts. (Try it - Hang a weight at the end of a rubber band to keep F constant, and use a hair dryer to increase the temperature.)
10. In addition to $P V$ work, systems with a surface require work to form the surface. At constant volume, the expression for the reversible work to form the surface is

$$
d w_{r e v}=\gamma d \sigma
$$

where γ is a constant called the surface tension and σ is the area of the surface that is formed. Then at constant volume, the total differential of the internal energy is given by

$$
d U=T d S+\gamma d \sigma
$$

For ideal systems, the surface tension is proportional to the temperature; i.e.

$$
\gamma=\kappa T
$$

where κ is a proportionality constant. By generating the Helmholtz free energy and the appropriate Euler-Maxwell relation, derive an expression for $(\partial U / \partial \sigma)_{T}$ for an ideal system.
Answer:

$$
\begin{gathered}
\left(\frac{\partial U}{\partial \sigma}\right)_{T}=T\left(\frac{\partial S}{\partial \sigma}\right)_{T}+\gamma \\
A=U-T S \\
d A=d U-T d S-S d T=-S d T+\gamma d \sigma \\
\left(\frac{\partial S}{\partial \sigma}\right)_{T}=-\left(\frac{\partial \gamma}{\partial T}\right)_{\sigma}=-\kappa
\end{gathered}
$$

Then

$$
\left(\frac{\partial U}{\partial \sigma}\right)_{T}=-\kappa T+\kappa T=0
$$

11. A certain gas obeys the Berthelot equation of state

$$
P=\frac{n R T}{V-n b}-\frac{a n^{2}}{T V^{2}}
$$

where a and b are numerical constants independent of T, V, P and n. Derive an expression for $\left(\frac{\partial H}{\partial V}\right)_{T}$ for the Berthelot gas.
Answer:

$$
\begin{gathered}
d H=T d S+V d P \\
\left(\frac{\partial H}{\partial V}\right)_{T}=T\left(\frac{\partial S}{\partial V}\right)_{T}+V\left(\frac{\partial P}{\partial V}\right)_{T} \\
d A=-S d T-P d V \\
\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V}
\end{gathered}
$$

$$
\begin{gathered}
\left(\frac{\partial H}{\partial V}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}+V\left(\frac{\partial P}{\partial V}\right)_{T} \\
\left(\frac{\partial P}{\partial T}\right)_{T}=\frac{n R}{V-n b}+\frac{a n^{2}}{T^{2} V^{2}} \quad\left(\frac{\partial P}{\partial V}\right)_{T}=-\frac{n R T}{(V-n b)^{2}}+\frac{2 a n^{2}}{T V^{3}} \\
\left(\frac{\partial H}{\partial V}\right)_{T}=\frac{n R T}{V-n b}+\frac{a n^{2}}{T V^{2}}-\frac{n R T V}{(V-n b)^{2}}+\frac{2 a n^{2}}{T V^{2}} \\
=\frac{n R T}{V-n b}+3 \frac{a n^{2}}{T V^{2}}-\frac{n R T V}{(V-n b)^{2}}
\end{gathered}
$$

12. A certain gas obeys the equation of state

$$
P=\frac{n R T}{V-n b}
$$

where b is a constant. For this gas, derive an equation for $(\partial H / \partial P)_{T}$.
Answer:

$$
\begin{gathered}
d H=T d S+V d P \\
\left(\frac{\partial H}{\partial P}\right)_{T}=T\left(\frac{\partial S}{\partial P}\right)_{T}+V \\
d G=-S d T+V d P \quad\left(\frac{\partial S}{\partial P}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{P} \\
\left(\frac{\partial H}{\partial P}\right)_{T}=V-T\left(\frac{\partial V}{\partial T}\right)_{T} \\
V=\frac{n R T}{P}+n b \quad\left(\frac{\partial V}{\partial T}\right)_{P}=\frac{n R}{P} \\
\left(\frac{\partial H}{\partial P}\right)_{T}=\frac{n R T}{P}+n b-\frac{n R T}{P}=n b
\end{gathered}
$$

13. A certain gas obeys the equation of state

$$
P=\frac{n R T}{V-n b}
$$

where b is a constant. Derive an expression for $(\partial H / \partial V)_{T}$ for the gas.
Answer:

$$
\begin{gathered}
d H=T d S+V d P \\
\left(\frac{\partial H}{\partial V}\right)_{T}=T\left(\frac{\partial S}{\partial V}\right)_{T}+V\left(\frac{\partial P}{\partial V}\right)_{T} \\
d A=-S d T-P d V \quad\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V}
\end{gathered}
$$

$$
\begin{gathered}
\left(\frac{\partial H}{\partial V}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}+V\left(\frac{\partial P}{\partial V}\right)_{T} \\
\left(\frac{\partial P}{\partial T}\right)_{V}=\frac{n R}{V-n b} \quad\left(\frac{\partial P}{\partial V}\right)_{T}=-\frac{n R T}{(V-n b)^{2}} \\
\left(\frac{\partial H}{\partial V}\right)_{T}=\frac{n R T}{V-n b}-\frac{n R T}{V-n b} \frac{V}{V-n b}
\end{gathered}
$$

14. A certain gas obeys the equation of state

$$
P=\frac{n R T}{V-n b}
$$

where b is a constant. Determine $(\partial H / \partial G)_{T}$ for the gas.
Answer:

$$
\begin{gathered}
d H=T d S+V d P \\
\left(\frac{\partial H}{\partial G}\right)_{T}=T\left(\frac{\partial S}{\partial G}\right)_{T}+V\left(\frac{\partial P}{\partial G}\right)_{T} \\
d G=-S d T+V d P \\
\left(\frac{\partial G}{\partial S}\right)_{T}=V\left(\frac{\partial P}{\partial S}\right)_{T}=-V\left(\frac{\partial T}{\partial V}\right)_{P} \\
\left(\frac{\partial S}{\partial G}\right)_{T}=-\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P} \\
\left(\frac{\partial G}{\partial P}\right)_{T}=V \quad\left(\frac{\partial P}{\partial G}\right)_{T}=\frac{1}{V} \\
\left(\frac{\partial H}{\partial G}\right)_{T}=-\frac{T}{V}\left(\frac{\partial V}{\partial T}\right)_{P}+1 \\
V=\frac{n R T}{P}+n b \quad\left(\frac{\partial V}{\partial T}\right)_{P}=\frac{n R}{P} \\
\left(\frac{\partial H}{\partial G}\right)_{T}=-\frac{n R T}{P V}+1=-1+\frac{n b}{V}+1=\frac{n b}{V}
\end{gathered}
$$

15. Consider a gas that obeys the equation of state

$$
P=\frac{n R T}{V-n b}
$$

where b is a constant. Derive an expression for $(\partial U / \partial A)_{T}$ for the gas.
Answer:
Method I

$$
d U=T d S-P d V
$$

$$
\begin{gathered}
\left(\frac{\partial U}{\partial A}\right)_{T}=T\left(\frac{\partial S}{\partial A}\right)_{T}-P\left(\frac{\partial V}{\partial A}\right)_{T} \\
d A=-S d T-P d V \\
\left(\frac{\partial A}{\partial S}\right)_{T}=-P\left(\frac{\partial V}{\partial S}\right)_{T}
\end{gathered}
$$

Using an Euler-Maxwell relation

$$
\begin{aligned}
\left(\frac{\partial V}{\partial S}\right)_{T} & =\left(\frac{\partial T}{\partial P}\right)_{V} \\
\left(\frac{\partial A}{\partial S}\right)_{T}=-P\left(\frac{\partial T}{\partial P}\right)_{V} \quad\left(\frac{\partial S}{\partial A}\right)_{T} & =-\frac{1}{P}\left(\frac{\partial P}{\partial T}\right)_{V} \\
\left(\frac{\partial A}{\partial V}\right)_{T} & =-P \quad\left(\frac{\partial V}{\partial A}\right)_{T}
\end{aligned}=-\frac{1}{P}, ~\left(\frac{\partial U}{\partial A}\right)_{T}=-\frac{T}{P}\left(\frac{\partial P}{\partial T}\right)_{V}+\frac{P}{P} .
$$

and

$$
\left(\frac{\partial U}{\partial A}\right)_{T}=-1+1=0
$$

Method II

$$
\begin{gathered}
d A=-S d T-P d V \\
\left(\frac{\partial A}{\partial U}\right)_{T}=-P\left(\frac{\partial V}{\partial U}\right)_{T}\left(\frac{\partial U}{\partial A}\right)_{T}=-\frac{1}{P}\left(\frac{\partial U}{\partial V}\right)_{T} \\
d U=T d S-P d V \\
\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial S}{\partial V}\right)_{T}-P \\
d A=-S d T-P d V \\
\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V} \\
\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}-P \\
=\frac{n R T}{V-n b}-P=0
\end{gathered}
$$

16. A certain gas obeys the equation of state

$$
P=\frac{n R T}{V-n b}
$$

where b is a constant. Determine $(\partial U / \partial G)_{T}$ for the gas.
Answer:

$$
\begin{gathered}
d U=T d S-P d V \\
d G=-S d T+V d P \\
\left(\frac{\partial U}{\partial G}\right)_{T}=T\left(\frac{\partial S}{\partial G}\right)_{T}-P\left(\frac{\partial V}{\partial G}\right)_{T} \\
\left(\frac{\partial G}{\partial S}\right)_{T}=V\left(\frac{\partial P}{\partial S}\right)_{T}=-V\left(\frac{\partial T}{\partial V}\right)_{P} \\
\left(\frac{\partial S}{\partial G}\right)_{T}=-\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P} \\
\left(\frac{\partial G}{\partial V}\right)_{T}=V\left(\frac{\partial P}{\partial V}\right)_{T} \\
\left(\frac{\partial V}{\partial G}\right)_{T}=\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T} \\
=-\frac{T}{V}\left(\frac{\partial V}{\partial T}\right)_{P}-\frac{P}{V}\left(\frac{\partial V}{\partial P}\right)_{T} \\
V=\frac{n R T}{P}+n b\left(\frac{\partial V}{\partial T}\right)_{P}=\frac{n R}{P}\left(\frac{\partial V}{\partial P}\right)_{T}=-\frac{n R T}{P^{2}} \\
\left(\frac{\partial U}{\partial G}\right)_{T}=-\frac{n R T}{P V}+\frac{n R T}{P V}=0
\end{gathered}
$$

