Chemistry 431
 Problem Set 7
 Fall 2023

1. Show that $G=A+P V$.
2. For the reaction
$\mathrm{CH}_{4(g)}+2 \mathrm{O}_{2(g)} \longrightarrow \mathrm{CO}_{2(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(l)}$
use Tables 4.1 and 4.2 to determine at $25^{\circ} \mathrm{C}$
(a) The amount of heat liberated per mole at constant pressure;
(b) The maximum amount of work obtainable from the reaction per mole;
(c) The maximum amount of non-PV work obtainable from the reaction per mole.
3. Three moles of an ideal diatomic gas at 1.0 bar pressure and a temperature of $25 .{ }^{\circ} \mathrm{C}$ are taken through the following series of steps:
(a) a free adiabatic expansion into a vacuum to double its volume;
(b) a constant volume heating to $100 .{ }^{\circ} \mathrm{C}$;
(c) a reversible adiabatic compression to the initial volume;
(d) a cooling at constant pressure to $25 .{ }^{\circ} \mathrm{C}$.

Calculate $\Delta U, \Delta H, \Delta S, \Delta A, \Delta G, q, w$, and $\int \frac{d q_{\text {sys }}}{T}$, for the overall process "a" + "b" + "c" + "d."
4. A certain gas obeys the equation of state

$$
P(V-n b)=n R T
$$

where b is a constant independent of P, T, V and n. Show that

$$
\left(\frac{\partial U}{\partial P}\right)_{T}=0
$$

for this particular gas.
5. A certain gas obeys the van der Waals equation of state

$$
P=\frac{n R T}{V-n b}-\frac{a n^{2}}{V^{2}}
$$

where a and b are numerical constants. Derive an expression for $(\partial U / \partial S)_{T}$ for the van der Waals gas in terms of a, b, V, n and R.
6. Show that

$$
\left(\frac{\partial C_{P}}{\partial P}\right)_{T}=-T\left(\frac{\partial^{2} V}{\partial T^{2}}\right)_{P}
$$

7. For an ideal gas, show that

$$
\left(\frac{\partial P}{\partial V}\right)_{S}=-\gamma\left(\frac{P}{V}\right)
$$

where $\gamma=C_{P} / C_{V}$.
8. A certain gas obeys the equation of state

$$
P(V-n b)=n R T
$$

where b is a numerical constant. Derive an expression for $(\partial H / \partial S)_{T}$ for the gas.
9. The work done on a rubber band when it is stretched by an infinitesimal length $d \ell$ owing to an applied force, F, is given by $d w=F d \ell$.
(a) Neglecting the volume change on stretching, show that

$$
\left(\frac{\partial U}{\partial \ell}\right)_{T}=F-T\left(\frac{\partial F}{\partial T}\right)_{\ell}
$$

(b) Experimentally, the force at constant length is given by

$$
F=\gamma T
$$

where γ is a constant. Show that

$$
\left(\frac{\partial U}{\partial \ell}\right)_{T}=0
$$

(c) Since stretching orders the rubber polymer, it can be shown that

$$
(\partial S / \partial F)_{T}<0
$$

i.e. there is an entropy decrease upon stretching. From this sign deduce the sign of $(\partial \ell / \partial T)_{F}$. Use this to predict what will happen to a rubber band with a weight hanging from it, if the temperature of the rubber is raised.
10. In addition to $P V$ work, systems with a surface require work to form the surface. At constant volume, the expression for the reversible work to form the surface is

$$
đ w_{\text {rev }}=\gamma d \sigma
$$

where γ is a constant called the surface tension and σ is the area of the surface that is formed. Then at constant volume, the total differential of the internal energy is given by

$$
d U=T d S+\gamma d \sigma
$$

For ideal systems, the surface tension is proportional to the temperature; i.e.

$$
\gamma=\kappa T
$$

where κ is a proportionality constant. By generating the Helmholtz free energy and the appropriate Euler-Maxwell relation, derive an expression for $(\partial U / \partial \sigma)_{T}$ for an ideal system.
11. A certain gas obeys the Berthelot equation of state

$$
P=\frac{n R T}{V-n b}-\frac{a n^{2}}{T V^{2}}
$$

where a and b are numerical constants independent of T, V, P and n. Derive an expression for $\left(\frac{\partial H}{\partial V}\right)_{T}$ for the Berthelot gas.
12. A certain gas obeys the equation of state

$$
P=\frac{n R T}{V-n b}
$$

where b is a constant. For this gas, derive an equation for $(\partial H / \partial P)_{T}$.
13. A certain gas obeys the equation of state

$$
P=\frac{n R T}{V-n b}
$$

where b is a constant. Derive an expression for $(\partial H / \partial V)_{T}$ for the gas.
14. A certain gas obeys the equation of state

$$
P=\frac{n R T}{V-n b}
$$

where b is a constant. Determine $(\partial H / \partial G)_{T}$ for the gas.
15. Consider a gas that obeys the equation of state

$$
P=\frac{n R T}{V-n b}
$$

where b is a constant. Derive an expression for $(\partial U / \partial A)_{T}$ for the gas.
16. A certain gas obeys the equation of state

$$
P=\frac{n R T}{V-n b}
$$

where b is a constant. Determine $(\partial U / \partial G)_{T}$ for the gas.

