Chemistry 431

Problem Set 4

Fall 2023

Solutions

1. The pressure of a Van der Waals gas as a function of T and V is given by

$$
P=\frac{R T}{V-b}-a\left(\frac{1}{V}\right)^{2}
$$

where a and b are constants and the number of moles has been set to 1 for this problem. The internal energy U as a function of T and V for a Van der Waals gas is given by

$$
U=C_{V} T-a \frac{1}{V}
$$

(a) Explictly evaluate $(\partial T / \partial V)_{P}$ for the Van der Waals gas and derive an expression for $(\partial V / \partial T)_{P}$ and from the explicitly evaluated derivative.
Answer:

$$
\begin{gathered}
P+\frac{a}{V^{2}}=\frac{R T}{V-b} \\
T=\frac{V-b}{R}\left[P+\frac{a}{V^{2}}\right] \\
\left(\frac{\partial T}{\partial V}\right)_{P}=\frac{1}{R}\left[P+\frac{a}{V^{2}}\right]-\frac{2 a}{V^{3}}\left(\frac{V-b}{R}\right) \\
\left(\frac{\partial V}{\partial T}\right)_{P}=\left[\frac{1}{R}\left(P+\frac{a}{V^{2}}\right)-\frac{2 a}{V^{3}}\left(\frac{V-b}{R}\right)\right]^{-1}
\end{gathered}
$$

(b) Explicitly calculate $(\partial U / \partial T)_{V},(\partial T / \partial V)_{U}$ and $(\partial V / \partial U)_{T}$ for the Van der Waals gas. Demonstrate that

$$
\left(\frac{\partial U}{\partial T}\right)_{V}\left(\frac{\partial T}{\partial V}\right)_{U}\left(\frac{\partial V}{\partial U}\right)_{T}=-1
$$

Answer:

$$
\begin{aligned}
& U=C_{V} T-\frac{a}{V} \\
& \left(\frac{\partial U}{\partial T}\right)_{V}=C_{V}
\end{aligned}
$$

$$
\begin{gathered}
T=\frac{U+a / V}{C_{V}} \\
\left(\frac{\partial T}{\partial V}\right)_{U}=-\frac{a}{C_{V} V^{2}} \\
\frac{a}{V}=C_{V} T-U \\
V=a \frac{1}{C_{V} T-U} \\
\left(\frac{\partial V}{\partial U}\right)_{T}=\frac{a}{\left(C_{V} T-U\right)^{2}} \\
\left(\frac{\partial U}{\partial T}\right)_{V}\left(\frac{\partial T}{\partial V}\right)_{U}\left(\frac{\partial V}{\partial U}\right)_{T}=C_{V}\left(-\frac{a}{C_{V} V^{2}}\right)\left(\frac{a}{\left(C_{V} T-U\right)^{2}}\right) \\
=-\frac{a^{2}}{V^{2}\left(C_{V} T-U\right)^{2}}
\end{gathered}
$$

But

$$
C_{V} T-U=\frac{a}{V}
$$

so that

$$
\left(\frac{\partial U}{\partial T}\right)_{V}\left(\frac{\partial T}{\partial V}\right)_{U}\left(\frac{\partial V}{\partial U}\right)_{T}=-\frac{a^{2}}{V^{2}} \frac{V^{2}}{a^{2}}=-1
$$

(c) Evaluate $(\partial U / \partial T)_{P}$ for the Van der Waals gas.

Answer:

$$
\begin{gathered}
d U=C_{V} d T+\frac{a}{V^{2}} d V \\
\left(\frac{\partial U}{\partial T}\right)_{P}=C_{V}+\frac{a}{V^{2}}\left(\frac{\partial V}{\partial T}\right)_{P} \\
=C_{V}+\frac{a}{V^{2}}\left[\frac{1}{R}\left(P+\frac{a}{V^{2}}\right)-\frac{2 a}{V^{3}}\left(\frac{V-b}{R}\right)\right]^{-1}
\end{gathered}
$$

2. (a) Give the total differential of the internal energy U of a system where U is taken to be a function of T and V.

Answer:

$$
d U=\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V
$$

(b) Consider a system where only $P V$-work is done and $P_{\text {ext }}=P$. Use the result from part "a" to show the expression for the heat is given by

$$
d q=\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left[\left(\frac{\partial U}{\partial V}\right)_{T}+P\right] d V
$$

Answer:

$$
\begin{gathered}
d U=đ q+đ w \\
=đ q-P d V
\end{gathered}
$$

or

$$
đ q=\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left[\left(\frac{\partial U}{\partial V}\right)_{T}+P\right] d V
$$

(c) Use part "b" to prove that the expression for $đ q$ is not an exact differential.

Answer:

$$
\left(\frac{\partial}{\partial V}\left(\frac{\partial U}{\partial T}\right)_{V}\right)_{T} \neq\left(\frac{\partial}{\partial T}\left[\left(\frac{\partial U}{\partial V}\right)_{T}+P\right]\right)_{V}
$$

3. For any substance, show that

$$
\left(\frac{\partial U}{\partial P}\right)_{V}=\frac{\kappa C_{V}}{\beta}
$$

Answer:

$$
\begin{gathered}
\kappa=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T} \\
\beta=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P} \\
\frac{\kappa}{\beta}=-\left[\frac{(\partial V / \partial P)_{T}}{(\partial V / \partial T)_{P}}\right]=\left(\frac{\partial T}{\partial P}\right)_{V} \\
C_{V} \frac{\kappa}{\beta}=\left(\frac{\partial U}{\partial T}\right)_{V}\left(\frac{\partial T}{\partial P}\right)_{V}=\left(\frac{\partial U}{\partial P}\right)_{V}
\end{gathered}
$$

4. Show that

$$
\left(\frac{\partial U}{\partial T}\right)_{P}=C_{V}+\kappa V\left(\frac{\partial P}{\partial T}\right)_{V}\left(\frac{\partial U}{\partial V}\right)_{T}
$$

where C_{V} is the constant volume heat capacity and κ is the isothermal compressibility.
Answer:

$$
\begin{gathered}
d U=C_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V \\
\left(\frac{\partial U}{\partial T}\right)_{P}=C_{V}+\left(\frac{\partial U}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{P} \\
\left(\frac{\partial V}{\partial T}\right)_{P}\left(\frac{\partial T}{\partial P}\right)_{V}\left(\frac{\partial P}{\partial V}\right)_{T}=-1 \\
\left(\frac{\partial V}{\partial T}\right)_{P}=-\left(\frac{\partial P}{\partial T}\right)_{V}\left(\frac{\partial V}{\partial P}\right)_{T}
\end{gathered}
$$

But

$$
\kappa=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}
$$

and

$$
\left(\frac{\partial V}{\partial T}\right)_{P}=\kappa V\left(\frac{\partial P}{\partial T}\right)_{V}
$$

Then

$$
\left(\frac{\partial U}{\partial T}\right)_{P}=C_{V}+\kappa V\left(\frac{\partial P}{\partial T}\right)_{V}\left(\frac{\partial U}{\partial V}\right)_{T}
$$

5. Show that

$$
\left(\frac{\partial H}{\partial P}\right)_{V}=\frac{C_{P} \kappa}{\beta}+\left(\frac{\partial H}{\partial P}\right)_{T}
$$

where κ is the isothermal compressiblilty and β is the isobaric coefficient of thermal expansion.
Answer:

$$
\begin{gathered}
d H=\left(\frac{\partial H}{\partial T}\right)_{P} d T+\left(\frac{\partial H}{\partial P}\right)_{T} d P \\
=C_{P} d T+\left(\frac{\partial H}{\partial P}\right)_{T} d P \\
\left(\frac{\partial H}{\partial P}\right)_{V}=C_{P}\left(\frac{\partial T}{\partial P}\right)_{V}+\left(\frac{\partial H}{\partial P}\right)_{T} \\
\left(\frac{\partial T}{\partial P}\right)_{V}\left(\frac{\partial P}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{P}=-1 \\
\left(\frac{\partial T}{\partial P}\right)_{V}=-\frac{\left(\frac{\partial V}{\partial P}\right)_{T}}{\left(\frac{\partial V}{\partial T}\right)_{P}}=-\frac{-V \kappa}{V \beta}=\frac{\kappa}{\beta}
\end{gathered}
$$

Then

$$
\left(\frac{\partial H}{\partial P}\right)_{V}=\frac{C_{P} \kappa}{\beta}+\left(\frac{\partial H}{\partial P}\right)_{T}
$$

6. Show that for any substance

$$
\left(\frac{\partial U}{\partial H}\right)_{P}=\frac{C_{V}}{C_{P}}+\left(\frac{\partial U}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial H}\right)_{P}
$$

and give the numerical value for $\left(\frac{\partial U}{\partial H}\right)_{P}$ for an ideal monatomic gas.
Answer:

$$
d U=\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V
$$

$$
\begin{aligned}
& =C_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V \\
\left(\frac{\partial U}{\partial H}\right)_{P} & =C_{V}\left(\frac{\partial T}{\partial H}\right)_{P}+\left(\frac{\partial U}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial H}\right)_{P} \\
& =\frac{C_{V}}{C_{P}}+\left(\frac{\partial U}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial H}\right)_{P}
\end{aligned}
$$

For an ideal gas $(\partial U / \partial V)_{T}=0$ and

$$
\left(\frac{\partial U}{\partial H}\right)_{P}=\frac{C_{V}}{C_{P}}=\frac{3 / 2 n R}{5 / 2 n R}=\frac{3}{5}
$$

7. Show that for any substance

$$
\left(\frac{\partial H}{\partial U}\right)_{V}=\frac{C_{P}}{C_{V}}-C_{P} \mu_{J T}\left(\frac{\partial P}{\partial U}\right)_{V}
$$

where the Joule-Thomson coefficient is defined by

$$
\mu_{J T}=\left(\frac{\partial T}{\partial P}\right)_{H}
$$

Answer:

$$
\begin{gathered}
d H=\left(\frac{\partial H}{\partial T}\right)_{P} d T+\left(\frac{\partial H}{\partial P}\right)_{T} d P=C_{P} d T+\left(\frac{\partial H}{\partial P}\right)_{T} d P \\
\left(\frac{\partial H}{\partial U}\right)_{V}=C_{P}\left(\frac{\partial T}{\partial U}\right)_{V}+\left(\frac{\partial H}{\partial P}\right)_{T}\left(\frac{\partial P}{\partial U}\right)_{V}=\frac{C_{P}}{C_{V}}+\left(\frac{\partial H}{\partial P}\right)_{T}\left(\frac{\partial P}{\partial U}\right)_{V} \\
\left(\frac{\partial H}{\partial P}\right)_{T}\left(\frac{\partial P}{\partial T}\right)_{H}\left(\frac{\partial T}{\partial H}\right)_{P}=-1 \\
\left(\frac{\partial H}{\partial P}\right)_{T}=-\left(\frac{\partial H}{\partial T}\right)_{P}\left(\frac{\partial T}{\partial P}\right)_{H}=-C_{P} \mu_{J T} \\
\left(\frac{\partial H}{\partial U}\right)_{V}=\frac{C_{P}}{C_{V}}-C_{P} \mu_{J T}\left(\frac{\partial P}{\partial U}\right)_{V}
\end{gathered}
$$

8. Show that

$$
\left(\frac{\partial H}{\partial P}\right)_{U}=C_{P}\left[\left(\frac{\partial T}{\partial P}\right)_{U}-\mu_{J T}\right]
$$

Answer:

$$
d H=\left(\frac{\partial H}{\partial T}\right)_{P} d T+\left(\frac{\partial H}{\partial P}\right)_{T} d P=C_{P} d T+\left(\frac{\partial H}{\partial P}\right)_{T} d P
$$

$$
\begin{gathered}
\left(\frac{\partial H}{\partial P}\right)_{U}=C_{P}\left(\frac{\partial T}{\partial P}\right)_{U}+\left(\frac{\partial H}{\partial P}\right)_{T} \\
\left(\frac{\partial H}{\partial P}\right)_{T}\left(\frac{\partial P}{\partial T}\right)_{H}\left(\frac{\partial T}{\partial H}\right)_{P}=-1 \\
\left(\frac{\partial H}{\partial P}\right)_{T}=-\left(\frac{\partial T}{\partial P}\right)_{H}\left(\frac{\partial H}{\partial T}\right)_{P}=-\mu_{J T} C_{P} \\
\left(\frac{\partial H}{\partial P}\right)_{U}=C_{P}\left(\frac{\partial T}{\partial P}\right)_{U}-C_{P} \mu_{J T}=C_{P}\left[\left(\frac{\partial T}{\partial P}\right)_{U}-\mu_{J T}\right]
\end{gathered}
$$

9. Show that for any substance

$$
\left(\frac{\partial H}{\partial V}\right)_{U}=C_{P}\left(\frac{\partial T}{\partial V}\right)_{U}-\frac{\left(\frac{\partial H}{\partial P}\right)_{T}\left(\frac{\partial U}{\partial V}\right)_{P}}{\left(\frac{\partial U}{\partial P}\right)_{V}}
$$

Answer:

$$
\begin{aligned}
& d H=\left(\frac{\partial H}{\partial T}\right)_{P} d T+\left(\frac{\partial H}{\partial P}\right)_{T} d P \\
&=C_{P} d T+\left(\frac{\partial H}{\partial P}\right)_{T} d P \\
&\left(\frac{\partial H}{\partial V}\right)_{U}=C_{P}\left(\frac{\partial T}{\partial V}\right)_{U}+\left(\frac{\partial H}{\partial P}\right)_{T}\left(\frac{\partial P}{\partial V}\right)_{U} \\
&\left(\frac{\partial P}{\partial V}\right)_{U}\left(\frac{\partial V}{\partial U}\right)_{P}\left(\frac{\partial U}{\partial P}\right)_{V}=-1 \\
&\left(\frac{\partial P}{\partial V}\right)_{U}=-\frac{\left(\frac{\partial U}{\partial V}\right)_{P}}{\left(\frac{\partial U}{\partial P}\right)_{V}} \\
&\left(\frac{\partial H}{\partial V}\right)_{U}=C_{P}\left(\frac{\partial T}{\partial V}\right)_{U}-\frac{\left(\frac{\partial H}{\partial P}\right)_{T}\left(\frac{\partial U}{\partial V}\right)_{P}}{\left(\frac{\partial U}{\partial P}\right)_{V}}
\end{aligned}
$$

10. Show that for any substance at temperature T, pressure P, volume V and internal energy U

$$
\left(\frac{\partial P}{\partial V}\right)_{U}=\left(\frac{\partial P}{\partial V}\right)_{T}-\frac{1}{C_{V}}\left(\frac{\partial P}{\partial T}\right)_{V}\left(\frac{\partial U}{\partial V}\right)_{T}
$$

where C_{V} is the constant volume heat capacity.
Answer:

$$
\begin{gathered}
d P=\left(\frac{\partial P}{\partial V}\right)_{T} d V+\left(\frac{\partial P}{\partial T}\right)_{V} d T \\
\left(\frac{\partial P}{\partial V}\right)_{U}=\left(\frac{\partial P}{\partial V}\right)_{T}+\left(\frac{\partial P}{\partial T}\right)_{V}\left(\frac{\partial T}{\partial V}\right)_{U} \\
\left(\frac{\partial T}{\partial V}\right)_{U}\left(\frac{\partial V}{\partial U}\right)_{T}\left(\frac{\partial U}{\partial T}\right)_{V}=-1 \\
\left(\frac{\partial T}{\partial V}\right)_{U}
\end{gathered}=-\frac{\left(\frac{\partial U}{\partial V}\right)_{T}}{\left(\frac{\partial U}{\partial T}\right)_{V}} \equiv-\frac{1}{C_{V}}\left(\frac{\partial U}{\partial V}\right)_{T} .
$$

Then

$$
\left(\frac{\partial P}{\partial V}\right)_{U}=\left(\frac{\partial P}{\partial V}\right)_{T}-\frac{1}{C_{V}}\left(\frac{\partial P}{\partial T}\right)_{V}\left(\frac{\partial U}{\partial V}\right)_{T}
$$

11. The heat capacity of CO_{2} is $C_{P, m}=2.09 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$. When 50 . grams of CO_{2} at $25 .{ }^{\circ} \mathrm{C}$ and 1.0 bar pressure are isothermally compressed to $10.0 \mathrm{bar}, \Delta H$ for the process is -23.18 J. Calculate the Joule-Thomson coefficient, $\mu_{J T}$, for CO_{2}.
Answer:

$$
\begin{gathered}
\mu_{J T}=-\frac{1}{C_{P}}\left(\frac{\partial H}{\partial P}\right)_{T} \\
n_{C O_{2}}=(50 \mathrm{~g})\left(\frac{\mathrm{mol}}{44 \mathrm{~g}}\right)=1.14 \mathrm{~mol} \\
\mu_{J T}=-\frac{(-23.18 \mathrm{~J}) /(9 \mathrm{bar})}{(1.14 \mathrm{~mol})\left(2.09 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)}=1.08 \mathrm{~K} \mathrm{bar}^{-1}
\end{gathered}
$$

