Chemistry 431

Problem Set 4

Fall 2023

1. The pressure of a Van der Waals gas as a function of T and V is given by

$$
P=\frac{R T}{V-b}-a\left(\frac{1}{V}\right)^{2}
$$

where a and b are constants and the number of moles has been set to 1 for this problem. The internal energy U as a function of T and V for a Van der Waals gas is given by

$$
U=C_{V} T-a \frac{1}{V}
$$

(a) Explictly evaluate $(\partial T / \partial V)_{P}$ for the Van der Waals gas and derive an expression for $(\partial V / \partial T)_{P}$ and from the explicitly evaluated derivative.
(b) Explicitly calculate $(\partial U / \partial T)_{V},(\partial T / \partial V)_{U}$ and $(\partial V / \partial U)_{T}$ for the Van der Waals gas. Demonstrate that

$$
\left(\frac{\partial U}{\partial T}\right)_{V}\left(\frac{\partial T}{\partial V}\right)_{U}\left(\frac{\partial V}{\partial U}\right)_{T}=-1
$$

(c) Evaluate $(\partial U / \partial T)_{P}$ for the Van der Waals gas.
2. (a) Give the total differential of the internal energy U of a system where U is taken to be a function of T and V.
(b) Consider a system where only $P V$-work is done and $P_{\text {ext }}=P$. Use the result from part "a" to show the expression for the heat is given by

$$
đ q=\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left[\left(\frac{\partial U}{\partial V}\right)_{T}+P\right] d V
$$

(c) Use part "b" to prove that the expression for $đ q$ is not an exact differential.
3. For any substance, show that

$$
\left(\frac{\partial U}{\partial P}\right)_{V}=\frac{\kappa C_{V}}{\beta}
$$

4. Show that

$$
\left(\frac{\partial U}{\partial T}\right)_{P}=C_{V}+\kappa V\left(\frac{\partial P}{\partial T}\right)_{V}\left(\frac{\partial U}{\partial V}\right)_{T}
$$

where C_{V} is the constant volume heat capacity and κ is the isothermal compressibility.
5. Show that

$$
\left(\frac{\partial H}{\partial P}\right)_{V}=\frac{C_{P} \kappa}{\beta}+\left(\frac{\partial H}{\partial P}\right)_{T}
$$

where κ is the isothermal compressiblilty and β is the isobaric coefficient of thermal expansion.
6. Show that for any substance

$$
\left(\frac{\partial U}{\partial H}\right)_{P}=\frac{C_{V}}{C_{P}}+\left(\frac{\partial U}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial H}\right)_{P}
$$

and give the numerical value for $\left(\frac{\partial U}{\partial H}\right)_{P}$ for an ideal monatomic gas.
7. Show that for any substance

$$
\left(\frac{\partial H}{\partial U}\right)_{V}=\frac{C_{P}}{C_{V}}-C_{P} \mu_{J T}\left(\frac{\partial P}{\partial U}\right)_{V}
$$

where the Joule-Thomson coefficient is defined by

$$
\mu_{J T}=\left(\frac{\partial T}{\partial P}\right)_{H}
$$

8. Show that

$$
\left(\frac{\partial H}{\partial P}\right)_{U}=C_{P}\left[\left(\frac{\partial T}{\partial P}\right)_{U}-\mu_{J T}\right]
$$

9. Show that for any substance

$$
\left(\frac{\partial H}{\partial V}\right)_{U}=C_{P}\left(\frac{\partial T}{\partial V}\right)_{U}-\frac{\left(\frac{\partial H}{\partial P}\right)_{T}\left(\frac{\partial U}{\partial V}\right)_{P}}{\left(\frac{\partial U}{\partial P}\right)_{V}}
$$

10. Show that for any substance at temperature T, pressure P, volume V and internal energy U

$$
\left(\frac{\partial P}{\partial V}\right)_{U}=\left(\frac{\partial P}{\partial V}\right)_{T}-\frac{1}{C_{V}}\left(\frac{\partial P}{\partial T}\right)_{V}\left(\frac{\partial U}{\partial V}\right)_{T}
$$

where C_{V} is the constant volume heat capacity.
11. The heat capacity of CO_{2} is $C_{P, m}=2.09 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$. When 50 . grams of CO_{2} at $25 .{ }^{\circ} \mathrm{C}$ and 1.0 bar pressure are isothermally compressed to $10.0 \mathrm{bar}, \Delta H$ for the process is -23.18 J. Calculate the Joule-Thomson coefficient, $\mu_{J T}$, for CO_{2}.

