Chemistry 431
 Problem Set 3
 Fall 2023
 Solutions

1. One mole of an ideal monatomic gas at $25 .{ }^{\circ} \mathrm{C}$ and 20 . bar pressure is expanded adiabatically against a constant external pressure of 1.0 bar until equilibrium is reached. Calculate $q, w, \Delta U$ and ΔH for the process.
Answer:

$$
\begin{gathered}
\frac{3}{2} n R\left(T_{f}-298 \mathrm{~K}\right)=-1.0 \operatorname{bar}\left(\frac{n R T_{f}}{P_{f}}-\frac{n R T_{i}}{P_{i}}\right) \\
\frac{3}{2}\left(T_{f}-298 \mathrm{~K}\right)=-\left(T_{f}-\frac{298 \mathrm{~K}}{20}\right) \\
T_{f}=185 \mathrm{~K} \\
q=0 \\
w=\Delta U=C_{V} \Delta T=\frac{3}{2}(1 \mathrm{~mol})\left(8.3144 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(185 \mathrm{~K}-298 \mathrm{~K})=-1409 \mathrm{~J} \\
\Delta H=C_{p} \Delta T=\frac{5}{3} \Delta U=-2349 \mathrm{~J}
\end{gathered}
$$

2. Three moles of an ideal monatomic gas at an initial pressure of 10.0 bar and an initial temperature of $100 .{ }^{\circ} \mathrm{C}$ are expanded adiabatically against a constant external pressure of 2.0 bar until equilibrium is reached. Calculate the final temperature of the gas.
Answer:

$$
\begin{gathered}
w=-P_{e x t}\left(V_{f}-V_{i}\right)=\Delta U=C_{V}\left(T_{f}-T_{i}\right) \\
-(2.0 \mathrm{bar})\left(\frac{n R T_{f}}{2.0 \mathrm{bar}}-\frac{n R(373 \mathrm{~K})}{10.0 \mathrm{bar}}\right)=\frac{3}{2} n R\left(T_{f}-373 \mathrm{~K}\right) \\
-\left(T_{f}-74.6 \mathrm{~K}\right)=\frac{3}{2} T_{f}-559.5 \mathrm{~K} \\
\frac{5}{2} T_{f}=634.1 \mathrm{~K} \\
T_{f}=253.6 \mathrm{~K}
\end{gathered}
$$

3. Calculate $q, w, \Delta U$ and ΔH for the adiabatic reversible compression of 3.0 moles of an ideal diatomic gas from 5.0 liters at $35 .{ }^{\circ} \mathrm{C}$ to 1.0 liter.
Answer:

$$
\begin{gathered}
T_{i} V_{i}^{\gamma-1}=T_{f} V_{f}^{\gamma-1} \\
\gamma=\frac{7}{5} \\
308 \mathrm{~K}(5)^{2 / 5}=T(1)^{2 / 5} \\
T=586 \mathrm{~K} \\
q=0 \\
w=\Delta U=C_{V} \Delta T=\frac{5}{2}(3 \mathrm{~mol})\left(8.3144 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(586 \mathrm{~K}-308 \mathrm{~K})=17335 \mathrm{~J} \\
\Delta H=C_{p} \Delta T=\frac{7}{5} \Delta U=24270 \mathrm{~J}
\end{gathered}
$$

4. A cylinder fitted with a frictionless piston contains 2.00 moles of an ideal monatomic gas at an initial pressure of 5.00 bar and an initial temperature of 298 K . The gas is first expanded adiabatically against a constant external pressure of 1.00 bar until equilibrium is reached, followed by an adiabatic, reversible compression until the final gas pressure equals the initial gas pressure of 5.00 bar. Calculate $q, w, \Delta U$ and ΔH for the overall, two-step process.
Answer:

$$
q=0
$$

Step 1

$$
\begin{gathered}
w_{1}=\Delta U_{1}=-P_{e x t} \Delta V=C_{V} \Delta T \\
-1.00 \operatorname{bar}\left(\frac{n R T_{f}}{1.00 \mathrm{bar}}-\frac{n R(298 \mathrm{~K})}{5.00 \mathrm{bar}}\right)=\frac{3}{2} n R\left(T_{f}-298 \mathrm{~K}\right) \quad T_{f}=203 \mathrm{~K} \\
\left.V_{f}=\frac{n R T_{f}}{P_{f}}=\frac{(2.00 \mathrm{~mol})(0.08314 \mathrm{~L} \text { bar mol}}{}{ }^{-1} \mathrm{~K}^{-1}\right)(203 \mathrm{~K}) \\
1.00 \mathrm{bar}
\end{gathered}=33.7 \mathrm{~L} \mathrm{~L}
$$

Step 2

$$
\begin{gathered}
P_{i}=1.00 \mathrm{bar} \quad V_{i}=33.7 \mathrm{~L} \\
P_{i} V_{i}^{\gamma}=P_{f} V_{f}^{\gamma} \quad \text { with } \quad \gamma=\frac{C_{P}}{C_{V}}=\frac{5 / 2 n R}{3 / 2 n R}=\frac{5}{3} \\
(1.00 \mathrm{bar})(33.7 \mathrm{~L})^{5 / 3}=(5.00 \mathrm{bar}) V_{f}^{5 / 3} \\
\left.V_{f}=12.8 \mathrm{~L} \quad T_{f}=\frac{P_{f} V_{f}}{n R}=\frac{(5.00 \mathrm{bar})(12.8 \mathrm{~L})}{(2.00 \mathrm{~mol})(0.08314 \mathrm{~L} \mathrm{bar} \mathrm{~mol}}{ }^{-1} \mathrm{~K}^{-1}\right)
\end{gathered}=386 . \mathrm{K} .
$$

Overall

$$
q=0
$$

$$
\begin{gathered}
\Delta U=w=C_{V} \Delta T=\frac{3}{2}(2.00 \mathrm{~mol})\left(8.3144 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(386 \mathrm{~K}-298 \mathrm{~K})=2195 \mathrm{~J} \\
\Delta H=C_{P} \Delta T=\frac{5}{3} \Delta U=3658 \mathrm{~J}
\end{gathered}
$$

5. One mole of an ideal monatomic gas at 1.0 bar pressure and a temperature of $25 .{ }^{\circ} \mathrm{C}$ is taken through the following series of steps:
(a) A heating at constant volume to $100 .{ }^{\circ} \mathrm{C}$;
(b) An adiabatic compression against a constant external pressure of 25 . bar until the volume is halved;
(c) A cooling at constant pressure until the final temperature is $35 .{ }^{\circ} \mathrm{C}$.

Calculate $q, w, \Delta U$ and ΔH for the overall process "a" + "b" + "c." [Hint: Think about state functions before solving this problem. Do not "brute force" the solution.]
Answer:

$$
\begin{aligned}
& \Delta U=C_{V} \Delta T=\frac{3}{2}(1 \mathrm{~mol})\left(8.3144 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(10 \mathrm{~K})=125 \mathrm{~J} \\
& \Delta H=C_{p} \Delta T=\frac{5}{3} \Delta U=208 \mathrm{~J} \\
& V_{i}=\frac{n R T_{i}}{P_{i}}=\frac{(1 \mathrm{~mol})\left(0.08314 \mathrm{~L} \text { bar mol }{ }^{-1} \mathrm{~K}^{-1}\right)(298 \mathrm{~K})}{1 \mathrm{bar}}=24.78 \mathrm{~L} \\
& q_{a}=C_{V} \Delta T=\frac{3}{2}(1 \mathrm{~mol})\left(8.3144 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(75 \mathrm{~K})=935 \mathrm{~J} \\
& q_{b}=0 \\
& P_{i}=(1 \mathrm{bar}) \frac{373}{298}=1.25 \mathrm{bar} \\
& V_{i}=\frac{n R T}{P}=\frac{(1 \mathrm{~mol})\left(0.08314 \mathrm{~L} \text { bar mol }{ }^{-1} \mathrm{~K}^{-1}\right)(373 \mathrm{~K})}{1.25 \mathrm{bar}}=24.81 \mathrm{~L} \\
& V_{f}=0.5 V_{i}=12.39 \mathrm{~L} \\
& -25 \operatorname{bar}(12.39 \mathrm{~L}-24.81 \mathrm{~L})=\frac{3}{2}(1 \mathrm{~mol})\left(0.08314 \mathrm{~L} \text { bar } \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)(T-373 \mathrm{~K}) \\
& T=2863 \mathrm{~K} \\
& q_{c}=C_{p} \Delta T=\frac{5}{2}(1 \mathrm{~mol})\left(8.3144 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(308 \mathrm{~K}-2863 \mathrm{~K})=-53108 \mathrm{~J} \\
& q=q_{a}+q_{b}+q_{c}=-52173 \mathrm{~J} \\
& w=\Delta U-q=(125 \mathrm{~J}+52173 \mathrm{~J})=52298 \mathrm{~J}
\end{aligned}
$$

6. 2.00 moles of an ideal diatomic gas at a temperature of $298 . \mathrm{K}$ and a pressure of 5.00 bar are expanded adiabatically against a constant external pressure of 2.00 bar until equilibrium is reached. The gas is then compressed adiabatically and reversibly until the change in the enthalpy ΔH for the two step process (first expansion, then compression) is 0 . Calculate the final volume after the completion of the two-step process.
Answer: Step 1

$$
\begin{gathered}
\Delta U=C_{V}\left(T_{f}-T_{i}\right)=w=-P_{e x t}\left(\frac{n R T_{f}}{P_{e x t}}-\frac{n R T_{i}}{P_{i}}\right) \\
\frac{5}{2} n R\left(T_{f}-298 . \mathrm{K}\right)=n R\left(-T_{f}+T_{i} \frac{P_{e x t}}{P_{i}}\right) \\
\frac{5}{2} T_{f}-745 . \mathrm{K}=-T_{f}+119.2 \mathrm{~K} \quad T_{f}=247 . \mathrm{K}
\end{gathered}
$$

After Step $1 \quad V=\frac{n R T}{P}=\frac{(2.00 \mathrm{~mol})\left(0.08314 \mathrm{~L} \mathrm{bar} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)(247 . \mathrm{K})}{2.00 \mathrm{bar}^{2}}=20.5 \mathrm{~L}$
Overall Process, final temperature:

$$
\Delta H=0 \quad \text { for the overall process, so that } \quad T_{f}=298 . \mathrm{K}
$$

Reversible, adiabatic step

$$
\begin{gathered}
T_{i} V_{i}^{\gamma-1}=T_{f} V_{f}^{\gamma-1} \\
T_{i}=247 . \mathrm{K}, T_{f}=298 . \mathrm{K}, V_{i}=20.5 \mathrm{~L}, \gamma-1=\frac{7}{5}-1=\frac{2}{5} \\
247 .(20.5 \mathrm{~L})^{2 / 5}=298 . V_{f}^{2 / 5} \quad V_{f}=12.8 \mathrm{~L}
\end{gathered}
$$

7. Two containers are joined together as in the Joule experiment. One contains 1.0 moles of He at $75 .{ }^{\circ} \mathrm{C}$, and the other contains 2.0 moles of N_{2} at $25 .{ }^{\circ} \mathrm{C}$. The gases are allowed to diffuse into each other adiabatically. Assuming the gases to be ideal, what is the final temperature of the system?
Answer:

$$
\begin{gathered}
\Delta U=0=C_{V, H e} \Delta T_{H e}+C_{V, N_{2}} \Delta T_{N_{2}} \\
\frac{3}{2}(1 \mathrm{~mol}) R\left(T_{f}-348 \mathrm{~K}\right)+\frac{5}{2}(2 \mathrm{~mol}) R\left(T_{f}-298 \mathrm{~K}\right)=0 \\
T_{f}=310 \mathrm{~K}
\end{gathered}
$$

