Chemistry 431
Problem Set 10
Fall 2023
Solutions

1. A certain gas obeys the equation of state
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where a and b are numerical constants. Derive an expression for the critical volume of

the gas in terms of b.
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2. Derive expressions for the critical pressure, temperature, volume and compression fac-
tor for the Berthelot equation of state given by
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3. Use the result of problem 2 to find the reduced equation of state for a Berthelot gas.
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4. A certain gas obeys the equation of state
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where a and b are numerical constants. Derive an expression for the critial volume of
the gas in terms of b.
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5. Derive an expression for the critical volume of a gas that obeys the equation of state
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where a and b are constants.
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6. Expand the van der Waals equation of state as a virial expansion in powers of 1/V
using the geometric series

1

=1l+ax+2>+2°+...
1—=x

for |z| < 1. You may terminate the series after the third virial coefficient.
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. A gas obeys the Berthelot equation of state
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where a and b are numerical constants. By expanding the equation of state in virial
form using powers of 1/V,,, determine an expression for the second virial coefficient of
the Berthelot gas.
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. The Boyle temperature of a gas is defined to be the temperature at which the second
virial coefficient in the inverse volume expansion vanishes. A certain gas obeys the

equation of state
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where a and b are numerical constants. Expand the equation of state in virial form,

and determine the Boyle temperature of the gas in terms of a,b and R.
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Then the second virial coefficient is given by
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where a and b are numerical constants. Given the critical volume of the gas is V, = 5b,
derive an expression for the compression factor at the critical point.
Answer:
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A certain gas obeys the equation of state
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where A and B are positive constants. The critical volume is found to be V. = 3B/A.
Derive an expression for the compression factor z. at the critical point thereby showing
z. to be independent of A and B.
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at the critical point. Then
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The critical volume V. of a certain gas that obeys the equation of state

RT a
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is V.. = 2b where a and b are numerical constants and V,,, is the molar volume. Derive
an expression for the compression factor z. at the critical point verifying that z. is
independent of a and b.
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A certain gas obeys the equation of state

PVm_1+ aP
RT 1+ aP

where « is a function of temperature only. Determine the fugacity of the gas as a
function of pressure.
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13. Derive an expression for the fugacity of a gas that obeys the equation of state
PV, (1—-bP)=RT

where b is a numerical constant. Determine the behavior of the fugacity as b — 0 and

as P — 0.
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14. Use the virial expansion
PV, = RT[1 +b(T)P + c¢(T)P?> + d(T)P* + .. ]

to derive an expression for the fugacity coefficient v of a gas in terms of the virial
coefficients. Use the result to find the value of v in the limit that P — 0.
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