Chemistry 431 Problem Set 10
 Fall 2023
 Solutions

1. A certain gas obeys the equation of state

$$
P=\frac{R T}{V_{m}-b}-\frac{a}{V_{m}^{4}}
$$

where a and b are numerical constants. Derive an expression for the critical volume of the gas in terms of b.
Answer:

$$
\begin{aligned}
\left(\frac{\partial P}{\partial V_{m}}\right)_{T} & =-\frac{R T}{\left(V_{m}-b\right)^{2}}+\frac{4 a}{V_{m}^{5}} \\
\left(\frac{\partial^{2} P}{\partial V_{m}^{2}}\right)_{T} & =\frac{2 R T}{\left(V_{m}-b\right)^{3}}-\frac{20 a}{V_{m}^{6}}
\end{aligned}
$$

At the critical point both the first and second derivatives vanish

$$
\frac{R T_{c}}{\left(V_{c}-b\right)^{2}}=\frac{4 a}{V_{c}^{5}}
$$

or

$$
\begin{gathered}
T_{c}=\left(\frac{4 a}{V_{c}^{5}}\right)\left(\frac{\left(V_{c}-b\right)^{2}}{R}\right) . \\
\frac{2 R}{\left(V_{c}-b\right)^{3}}\left(\frac{4 a}{V_{c}^{5}}\right)\left(\frac{\left(V_{c}-b\right)^{2}}{R}\right)=\frac{20 a}{V_{c}^{6}} \\
\frac{8}{V_{c}-b}=\frac{20}{V_{c}} \\
12 V_{c}=20 b \\
V_{c}=\frac{5}{3} b
\end{gathered}
$$

2. Derive expressions for the critical pressure, temperature, volume and compression factor for the Berthelot equation of state given by

$$
P=\frac{n R T}{V-n b}-\frac{a n^{2}}{T V^{2}}
$$

Answer:

$$
\begin{align*}
P & =\frac{R T}{V-b}-\frac{a}{T V^{2}} \\
\left(\frac{\partial P}{\partial V}\right)_{T} & =-\frac{R T}{(V-b)^{2}}+\frac{2 a}{T V^{3}} \tag{1}\\
\left(\frac{\partial^{2} P}{\partial V^{2}}\right)_{T} & =\frac{2 R T}{(V-b)^{3}}-\frac{6 a}{T V^{4}} \tag{2}
\end{align*}
$$

From Eq.(1)

$$
\frac{2 a}{T V^{3}}=\frac{R T}{(V-b)^{2}}
$$

and

$$
\begin{equation*}
T^{2}=\frac{2 a(V-b)^{2}}{R V^{3}} \tag{3}
\end{equation*}
$$

From Eq.(2)

$$
\frac{2 R T}{(V-b)^{3}}=\frac{6 a}{T V^{4}}
$$

or

$$
\begin{equation*}
T^{2}=\frac{3 a(V-b)^{3}}{R V^{4}} \tag{4}
\end{equation*}
$$

Equating Eqs.(3) and (4)

$$
\begin{gathered}
\frac{2 a(V-b)^{2}}{R V^{3}}=\frac{3 a(V-b)^{3}}{R V^{4}} \\
2=\frac{3(V-b)}{V}
\end{gathered}
$$

or

$$
\begin{equation*}
V_{c}=3 b \tag{5}
\end{equation*}
$$

From Eqs.(3) and (5)

$$
\begin{align*}
T_{c}^{2} & =\frac{2 a(3 b-b)^{2}}{R(3 b)^{3}} \\
& =\left(\frac{8 a}{27 R b}\right)^{1 / 2} \\
& =\frac{2}{3}\left(\frac{2 a}{3 R b}\right)^{1 / 2} \tag{6}
\end{align*}
$$

Using the equation of state

$$
P_{c}=\frac{R}{2 b} \frac{2}{3}\left(\frac{2 a}{3 R b}\right)^{1 / 2}-\frac{a}{9 b^{2}} \frac{3}{2}\left(\frac{3 R b}{2 a}\right)^{1 / 2}
$$

$$
\begin{equation*}
=\frac{1}{12}\left(\frac{2 R a}{3 b^{3}}\right)^{1 / 2} \tag{7}
\end{equation*}
$$

Then

$$
z_{c}=\frac{P_{c} V_{c}}{R T_{c}}=\frac{(1 / 12)\left(2 R a / 3 b^{3}\right)^{1 / 2} 3 b}{R(2 a / 3 R b)^{1 / 2}(2 / 3)}=\frac{3}{8}=0.375
$$

3. Use the result of problem 2 to find the reduced equation of state for a Berthelot gas.

Answer:

$$
\begin{gathered}
P=\frac{R T}{V-b}-\frac{a}{T V^{2}} \\
P=P_{r} P_{c} \quad V=V_{r} V_{c} \quad T=T_{r} T_{c} \\
P_{r} \frac{1}{12}\left(\frac{2 a R}{3 b^{3}}\right)^{1 / 2}=\frac{R T_{r}(2 / 3)(2 a / 3 R b)^{1 / 2}}{3 b V_{r}-b}-\frac{a}{9 b^{2} V_{r}^{2}} \frac{3}{2}\left(\frac{3 R b}{2 a}\right)^{1 / 2} \frac{1}{T_{r}}
\end{gathered}
$$

Then

$$
\begin{gathered}
P_{r}=\frac{T_{t}}{b\left(3 V_{r}-1\right)} \frac{2 R}{3}\left(\frac{2 a}{3 R b}\right)^{1 / 2} 12\left(\frac{3 b^{3}}{2 a R}\right)^{1 / 2} \\
-\frac{1}{T V_{r}^{2}} \frac{3}{2}\left(\frac{3 R b}{2 a}\right)^{1 / 2} \frac{a}{9 b^{2}} 12\left(\frac{3 b^{3}}{2 a R}\right)^{1 / 2} \\
=\frac{8 T_{r}}{3 V_{r}-1}-\frac{3}{T_{r} V_{r}^{2}}
\end{gathered}
$$

4. A certain gas obeys the equation of state

$$
P=\frac{R T}{V_{m}-b}-\frac{a}{\left(V_{m}+b\right)^{2}}
$$

where a and b are numerical constants. Derive an expression for the critial volume of the gas in terms of b.
Answer:

$$
\begin{gathered}
\left(\frac{\partial P}{\partial V_{m}}\right)_{T}=-\frac{R T}{\left(V_{m}-b\right)^{2}}+\frac{2 a}{\left(V_{m}+b\right)^{3}} \\
=0 \quad \text { at } T_{c}=\left(\frac{2 a}{\left(V_{c}+b\right)^{3}}\right)\left(\frac{\left(V_{c}-b\right)^{2}}{R}\right) \\
\left(\frac{\partial^{2} P}{\partial V_{m}^{2}}\right)_{T}=\frac{2 R T}{\left(V_{m}-b\right)^{3}}-\frac{6 a}{\left(V_{m}+b\right)^{4}} \\
=0 \quad \text { at }\left(\frac{2 R}{\left(V_{c}-b\right)^{3}}\right)\left(\frac{2 a}{\left(V_{c}+b\right)^{3}}\right)\left(\frac{\left(V_{c}-b\right)^{2}}{R}\right)=\frac{6 a}{\left(V_{c}+b\right)^{4}} \\
\frac{2}{V_{c}-b}=\frac{3}{V_{c}+b} \\
V_{c}=5 b
\end{gathered}
$$

5. Derive an expression for the critical volume of a gas that obeys the equation of state

$$
P=\frac{R T}{V_{m}-b}-\frac{a}{V_{m}^{6}}
$$

where a and b are constants.
Answer:

$$
\begin{aligned}
\left(\frac{\partial P}{\partial V_{m}}\right)_{T} & =-\frac{R T}{\left(V_{m}-b\right)^{2}}+\frac{6 a}{V_{m}^{7}} \\
\left(\frac{\partial^{2} P}{\partial V_{m}^{2}}\right)_{T} & =\frac{2 R T}{\left(V_{m}-b\right)^{3}}-\frac{42 a}{V_{m}^{8}}
\end{aligned}
$$

$\left(\partial P / \partial V_{m}\right)_{T}=0$ at

$$
\frac{R T_{c}}{\left(V_{c}-b\right)^{2}}=\frac{6 a}{V_{c}^{7}} \text { or } T_{c}=\frac{6 a}{V_{c}^{7}} \frac{\left(V_{c}-b\right)^{2}}{R}
$$

$\left(\partial^{2} P / \partial V_{m}^{2}\right)_{T}=0$ at

$$
\frac{2 R T_{c}}{\left(V_{c}-b\right)^{3}}=\frac{42 a}{V_{c}^{8}}
$$

Then

$$
\begin{gathered}
\frac{2 R}{\left(V_{c}-b\right)^{3}} \frac{6 a}{V_{c}^{7}} \frac{\left(V_{c}-b\right)^{2}}{R}=\frac{42 a}{V_{c}^{8}} \\
\frac{12}{V_{c}-b}=\frac{42}{V_{c}} \text { or } V_{c}=\frac{7}{5} b
\end{gathered}
$$

6. Expand the van der Waals equation of state as a virial expansion in powers of $1 / V$ using the geometric series

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots
$$

for $|x|<1$. You may terminate the series after the third virial coefficient.
Answer:

$$
\begin{gathered}
P=\frac{R T}{V-b}-\frac{a}{V^{2}} \\
=\frac{R T}{V}\left[\frac{1}{1-b / V}\right]-\frac{a}{V^{2}} \\
P V=R T\left[1+\frac{b}{V}+\left(\frac{b}{V}\right)^{2}+\ldots\right]-\frac{a}{V} \\
=R T\left[1+\frac{b-a / R T}{V}+\left(\frac{b}{V}\right)^{2} \cdots\right]
\end{gathered}
$$

Then

$$
\begin{gathered}
B(T)=b-\frac{a}{R T} \\
C(T)=b^{2}
\end{gathered}
$$

7. A gas obeys the Berthelot equation of state

$$
P=\frac{R T}{V_{m}-b}-\frac{a}{T V_{m}^{2}}
$$

where a and b are numerical constants. By expanding the equation of state in virial form using powers of $1 / V_{m}$, determine an expression for the second virial coefficient of the Berthelot gas.
Answer:

$$
\begin{gathered}
P=\frac{R T}{V_{m}\left(1-\frac{b}{V_{m}}\right)}-\frac{a}{T V_{m}^{2}} \\
=\frac{R T}{V_{m}}\left[1+\frac{b}{V_{m}}+\left(\frac{b}{V_{m}}\right)^{2}+\ldots\right]-\frac{a}{T V_{m}^{2}} \\
=\frac{R T}{V_{m}}\left[1+\frac{b}{V_{m}}+\left(\frac{b}{V_{m}}\right)^{2}+\ldots-\frac{a}{R T^{2} V_{m}}\right] \\
=\frac{R T}{V_{m}}\left[1+\frac{b-a / R T^{2}}{V_{m}}+\left(\frac{b}{V_{m}}\right)^{2}+\ldots\right]
\end{gathered}
$$

so that the second virial coefficient is

$$
B(T)=b-\frac{a}{R T^{2}}
$$

8. The Boyle temperature of a gas is defined to be the temperature at which the second virial coefficient in the inverse volume expansion vanishes. A certain gas obeys the equation of state

$$
P=\frac{R T}{V_{m}-b}-\frac{a}{T^{2} V_{m}^{2}}
$$

where a and b are numerical constants. Expand the equation of state in virial form, and determine the Boyle temperature of the gas in terms of a, b and R.
Answer:

$$
P=\frac{R T}{V_{m}} \frac{1}{1-\frac{b}{V_{m}}}-\frac{a}{T^{2} V_{m}^{2}}
$$

$$
\begin{aligned}
& P V_{m}=R T\left[1+\frac{b}{V_{m}}+\left(\frac{b}{V_{m}}\right)^{2}+\ldots\right]-\frac{a}{T^{2} V_{m}} \\
& =R T\left[1+\frac{1}{V_{m}}\left(b-\frac{a}{R T^{3}}\right)+\left(\frac{b}{V_{m}}\right)^{2}+\ldots\right]
\end{aligned}
$$

Then the second virial coefficient is given by

$$
B(T)=b-\frac{a}{R T^{3}}=0
$$

when

$$
T=\left(\frac{a}{R b}\right)^{1 / 3}
$$

9. A certain gas obeys the equation of state

$$
P=\frac{R T}{V_{m}-b}-\frac{a}{\left(V_{m}+b\right)^{2}}
$$

where a and b are numerical constants. Given the critical volume of the gas is $V_{c}=5 b$, derive an expression for the compression factor at the critical point.
Answer:

$$
\left(\frac{\partial P}{\partial V_{m}}\right)_{T}=-\frac{R T}{\left(V_{m}-b\right)^{2}}+\frac{2 a}{\left(V_{m}+b\right)^{3}}
$$

$=0 \mathrm{at}$

$$
\begin{gathered}
T_{c}=\frac{2 a}{\left(V_{m}+b\right)^{3}} \frac{\left(V_{m}-b\right)^{2}}{R}=\frac{2 a}{(6 b)^{3}} \frac{(4 b)^{2}}{R}=\frac{4 a}{27 R b} \\
P_{c}=\frac{R T_{c}}{V_{c}-b}-\frac{a}{\left(V_{c}+b\right)^{2}}=\frac{R}{4 b} \frac{4 a}{27 R b}-\frac{a}{36 b^{2}}=\frac{a}{4(27) b^{2}} \\
z_{c}=\frac{P_{c} V_{c}}{R T_{c}}=\frac{a}{4(27) b^{2}} \frac{5 b(27 R b)}{R(4 a)}=\frac{5}{16}
\end{gathered}
$$

10. A certain gas obeys the equation of state

$$
P=\frac{R T}{V}-\frac{A}{V^{2}}+\frac{B}{V^{3}}
$$

where A and B are positive constants. The critical volume is found to be $V_{c}=3 B / A$. Derive an expression for the compression factor z_{c} at the critical point thereby showing z_{c} to be independent of A and B.
Answer

$$
\left(\frac{\partial P}{\partial V}\right)_{T}=-\frac{R T}{V^{2}}+\frac{2 A}{V^{3}}-\frac{3 B}{V^{4}}=0
$$

at the critical point. Then

$$
R T_{c}=\frac{2 A}{V_{c}}-\frac{3 B}{V_{c}^{2}}
$$

or

$$
\begin{gathered}
T_{c}=\frac{1}{R}\left(\frac{A^{2}}{B}-\frac{2}{3} \frac{A^{2}}{B}\right)=\frac{A^{2}}{3 R B} \\
P_{c}=\frac{R T_{c}}{V_{c}}-\frac{A}{V_{c}^{2}}+\frac{B}{V_{c}^{3}}=\frac{R A^{2}}{3 R B} \frac{A}{3 B}-\frac{A^{3}}{9 B^{2}}+\frac{A^{3}}{27 B^{2}}=\frac{A^{3}}{27 B^{2}} \\
z_{c}=\frac{P_{c} V_{c}}{R T_{c}}=\frac{A^{3}}{27 B^{2}} \frac{3 B}{A R} \frac{3 R B}{A^{2}}=\frac{1}{3}
\end{gathered}
$$

11. The critical volume V_{c} of a certain gas that obeys the equation of state

$$
P=\frac{R T}{V_{m}-b}-\frac{a}{V_{m}^{3}}
$$

is $V_{c}=2 b$ where a and b are numerical constants and V_{m} is the molar volume. Derive an expression for the compression factor z_{c} at the critical point verifying that z_{c} is independent of a and b.
Answer:

$$
\left(\frac{\partial P}{\partial V_{m}}\right)_{T}=-\frac{R T}{\left(V_{m}-b\right)^{2}}+\frac{3 a}{V_{m}^{4}}=0
$$

at

$$
\begin{gathered}
\frac{R T_{c}}{\left(V_{c}-b\right)^{2}}=\frac{3 a}{V_{c}^{4}} \\
\frac{R T_{c}}{b^{2}}=\frac{3 a}{16 b^{4}} \quad T_{c}=\frac{3 a}{16 R b^{2}} \\
P_{c}=R \frac{3 a}{16 R b^{2}} \frac{1}{b}-\frac{a}{8 b^{3}}=\frac{a}{16 b^{3}} \\
z_{c}=\frac{P_{c} V_{c}}{R T_{c}}=\frac{a}{16 b^{3}} \frac{2 b}{R} \frac{16 b^{2} R}{3 a}=\frac{2}{3}
\end{gathered}
$$

12. A certain gas obeys the equation of state

$$
\frac{P V_{m}}{R T}=1+\frac{\alpha P}{1+\alpha P}
$$

where α is a function of temperature only. Determine the fugacity of the gas as a function of pressure.
Answer:

$$
f=P \exp \left\{\int_{0}^{P} \frac{z(P, T)-1}{P} d P\right\}
$$

Now

$$
z(P, T)=1+\frac{\alpha P}{1+\alpha P}
$$

Let

$$
\begin{gathered}
I=\int_{0}^{P} \frac{z(P, T)-1}{P} d P=\int_{0}^{P} \frac{\alpha P}{1+\alpha P} \frac{1}{P} d P \\
=\alpha \int_{0}^{P} \frac{d P}{1+\alpha P}
\end{gathered}
$$

Let

$$
y=1+\alpha P \quad d P=\frac{1}{\alpha} d y
$$

Then

$$
I=\int_{1}^{(1+\alpha P)} \frac{d y}{y}=\ln (1+\alpha P)
$$

Then

$$
f=P \exp \{\ln (1+\alpha P)\}=P(1+\alpha P)=P+\alpha P^{2}
$$

13. Derive an expression for the fugacity of a gas that obeys the equation of state

$$
P V_{m}(1-b P)=R T
$$

where b is a numerical constant. Determine the behavior of the fugacity as $b \rightarrow 0$ and as $P \rightarrow 0$.
Answer:

$$
\begin{gathered}
f=P \exp \left(\int_{0}^{P} \frac{z-1}{P} d P\right) \\
z=\frac{P V_{m}}{R T} \quad \frac{P V_{m}}{R T}(1-b P)=z(1-b P)=1 \\
z=\frac{1}{1-b P} \quad z-1=\frac{1}{1-b P}-1=\frac{1-1+b p}{1-b P}=\frac{b P}{1-b P} \\
\int_{0}^{P} \frac{z-1}{P} d P=b \int_{0}^{P} \frac{d P}{1-b P} \\
y=1-b P \quad d y=-b d P \quad d P=-\frac{d y}{b} \\
\int_{0}^{P} \frac{z-1}{P} d P=-\int_{1}^{1-b P} \frac{d y}{y}=-\ln (1-b P)=\ln \frac{1}{1-b P} \\
f=\frac{P}{1-b P} \\
\lim _{b \rightarrow 0} f=P \quad \lim _{P \rightarrow 0} \frac{f}{P}=1
\end{gathered}
$$

14. Use the virial expansion

$$
P V_{m}=R T\left[1+b(T) P+c(T) P^{2}+d(T) P^{3}+\ldots\right]
$$

to derive an expression for the fugacity coefficient γ of a gas in terms of the virial coefficients. Use the result to find the value of γ in the limit that $P \rightarrow 0$.
Answer:

$$
\begin{gathered}
z=\frac{P V_{m}}{R T}=1+b(T) P+c(T) P^{2}+d(T) P^{3} \ldots \\
\int_{0}^{P} \frac{z-1}{P} d P=\int_{0}^{P}\left[b(T)+c(T) P+d(T) P^{2}+\ldots\right] \\
=b(T) P+\frac{c(T) P^{2}}{2}+\frac{d(T)}{3} P^{3}+\ldots \\
\gamma=\exp \left\{\int_{0}^{P} \frac{z-1}{P} d P\right\} \\
=\exp \left\{b(T) P+\frac{c(T) P^{2}}{2}+\frac{d(T)}{3} P^{3}+\ldots\right\} \\
\lim _{P \rightarrow 0} \gamma=e^{0}=1
\end{gathered}
$$

