Chemistry 431 Practice Final Exam

Fall 2023
Solutions

$$
\begin{gathered}
R=8.3144 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
R=.0821 \mathrm{~L} \mathrm{~atm} \mathrm{~mol} \\
-1 \\
\mathrm{~K}^{-1} \\
R=.08314 \mathrm{~L} \mathrm{bar} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
k=1.381 \times 10^{-23} \mathrm{~J} \mathrm{molecule}^{-1} \mathrm{~K}^{-1} \\
h=6.626 \times 10^{-34} \mathrm{Js} \\
N_{A}=6.022 \times 10^{23} \mathrm{molecules} \mathrm{~mol}^{-1} \\
F=96485 \mathrm{C} \mathrm{~mol}^{-1} \\
g=9.8 \mathrm{~m} \mathrm{~s}^{-2} \\
1 \text { atmosphere }=1.01 \mathrm{bar}=1.01 \times 10^{5} \mathrm{~N} \mathrm{~m}^{-2} \\
1 \mathrm{~kg}=1000 . \mathrm{g} \\
1 \mathrm{~L}=10^{3} \mathrm{~cm}^{3} \\
10^{2} \mathrm{~cm}=1 \mathrm{~m} \\
\sigma=4 \pi r^{2} \quad V=(4 / 3) \pi r^{3} \\
T=t+273.15 \\
1+x+x^{2}+x^{3}+\ldots=1 /(1-x) \quad|x|<1
\end{gathered}
$$

Each question is worth 33 Points. Writing your correct name on the cover and on all pages with work is worth 2 points.

Name:

1. Calculate $q, w, \Delta U, \Delta H$ and ΔS when 3.50 moles of an ideal monatomic gas initially at a temperature of $T_{i}=298 \mathrm{~K}$ and a pressure of $P_{i}=1.00 \mathrm{bar}$ are taken though the following two-step process: 1) the gas is compressed adiabatically and reversibly until the volume is 0.750 times the initial volume, and 2) the gas expands adiabatically against a constant external pressure of 1.00 bar until equilibrium is reached.
Answer:

$$
\begin{gathered}
q=0 \\
T_{i} V_{i}^{\gamma-1}=T_{f} V_{f}^{\gamma-1} T_{2}=298 K\left(\frac{1}{0.750}\right)^{2 / 3} \quad T_{2}=361 K \\
w=\Delta U=-P_{e x t} \Delta V=-1.00\left(\frac{n R T_{f}}{1.00}-\frac{n R(361 \mathrm{~K})}{P_{2}}\right)=C_{V} \Delta T=\frac{3}{2} n R\left(T_{f}-361 \mathrm{~K}\right) \\
P_{2}=\frac{n R T_{2}}{V_{2}}=\frac{n R(361)}{n R(298)(0.75) / 1.00 \mathrm{bar}}=1.61 \mathrm{bar} \\
-T_{f}+\frac{361 \mathrm{~K}}{1.61}=\frac{3}{2}\left(T_{f}-361 \mathrm{~K}\right) \quad T_{f}=306 \mathrm{~K} \\
\Delta U=w=\frac{3}{2} n R \Delta T=\frac{3}{2}(3.50 \mathrm{~mol})\left(8.3144 \mathrm{~J} \mathrm{~mol}{ }^{-1} \mathrm{~K}^{-1}\right)(306 \mathrm{~K}-298 \mathrm{~K})=349 \mathrm{~J} \\
\Delta H=\frac{5}{3} \Delta U=582 \mathrm{~J}
\end{gathered}
$$

$$
\Delta S=C_{P} \ln \frac{T_{f}}{T_{i}}=\frac{5}{2} n R \ln \frac{T_{f}}{T_{i}}=\frac{5}{2}(3.50 \mathrm{~mol})\left(8.3144 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \ln \frac{306}{298}=1.93 \mathrm{~J} \mathrm{~K}^{-1}
$$

2. Show that

$$
\left(\frac{\partial U}{\partial T}\right)_{S}=\frac{C_{V} P}{T(\partial P / \partial T)_{V}}
$$

and evaluate the expression for an ideal monatomic gas.
Answer:

$$
\begin{gathered}
d U=T d S-P d V \\
\left(\frac{\partial U}{\partial T}\right)_{S}=-P\left(\frac{\partial V}{\partial T}\right)_{S} \\
\left(\frac{\partial V}{\partial T}\right)_{S}\left(\frac{\partial T}{\partial S}\right)_{V}\left(\frac{\partial S}{\partial V}\right)_{T}=-1 \\
\left(\frac{\partial V}{\partial T}\right)_{S}=-\frac{\left(\frac{\partial S}{\partial T}\right)_{V}}{\left(\frac{\partial S}{\partial V}\right)_{T}}=\frac{\left(\frac{\partial S}{\partial T}\right)_{V}=\frac{C_{V}}{T}}{d S=\frac{1}{T} d U+\frac{P}{T} d V} \begin{array}{c}
\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V} \\
d A=-S d T-P d V \\
\left(\frac{\partial V}{\partial T}\right)_{S}=\frac{C_{V}}{\left(\frac{\partial P}{\partial T}\right)_{V}} \\
\left(\frac{\partial U}{\partial T}\right)_{S}=\frac{C_{V} P}{T(\partial P / \partial T)_{V}} \\
P=\frac{n R T}{V} \\
\left(\frac{\partial P}{\partial T}\right)_{V}=\frac{n R}{V} \\
\left.\frac{\partial U}{\partial T}\right)_{S}=\frac{C_{V} P}{n R T / V}=C_{V}=\frac{3}{2} n R
\end{array},
\end{gathered}
$$

Name:
3. Solid sulfur occurs in two crystalline forms, rhombic and monoclinic. The solubility of rhombic sulfur in $\mathrm{CCl}_{4(\ell)}$ is 0.262 molal at 298 K . Given $\Delta_{r, m} G^{\ominus}$ for the reaction

$$
\mathrm{S}_{\text {rhombic }} \longrightarrow \mathrm{S}_{\text {monoclinic }}
$$

is $96.1 \mathrm{~J} \mathrm{~mol}^{-1}$ at 298 K , calculate the molal solubility of monoclinic sulfur in carbon tetrachloride at 298 K . You should assume both solutions are sufficiently dilute that the solutes obey Henry's law.
Answer: Let $\mu_{\text {sulfur, } \ell}^{\ominus}$ be the standard chemical potential of sulfur in the liquid phase of a solution. Then

$$
\begin{aligned}
\mu_{R}^{*}(\text { solid }) & =\mu_{\text {sulfur }, \ell}^{\ominus}+R T \ln \frac{m_{R}}{m_{\circ}} \\
\mu_{M}^{*}(\text { solid }) & =\mu_{\text {sulfur }, \ell}^{\ominus}+R T \ln \frac{m_{M}}{m_{\circ}}
\end{aligned}
$$

Subtracting

$$
\begin{gathered}
\mu_{M}^{*}-\mu_{R}^{*}=\Delta_{r, m} G^{\ominus}=R T \ln \frac{m_{M}}{m_{R}} \\
96.1 \mathrm{~J} \mathrm{~mol}^{-1}=\left(8.3144 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(298 \mathrm{~K}) \ln \frac{m_{M}}{0.262 \mathrm{molal}}
\end{gathered}
$$

$$
m_{M}=0.272 \text { molal }
$$

4. At a total pressure of 4.00 bar, it is found that the degree of dissociation α for the gas-phase process

$$
\mathrm{N}_{2} \mathrm{O}_{4(g)} \rightleftharpoons 2 \mathrm{NO}_{2(g)}
$$

is 0.140 at 298 K and 0.200 at 308 K . Assuming the standard enthalpy change for the reaction is temperature independent, calculate $\Delta_{r, m} H^{\ominus}, \Delta_{r, m} U, \Delta_{r, m} G^{\ominus}$ and $\Delta_{r, m} S^{\ominus}$ for the reaction at 298 K .
Answer:

	$n_{N_{2} \mathrm{O}_{4}}$	$n_{\mathrm{NO}_{2}}$
initial	n	0
change	$-\alpha n$	$2 \alpha n$
equilibrium	$n(1-\alpha)$	$2 \alpha n$

$$
\begin{gathered}
n_{t o t}=n(1+\alpha) \\
K=\frac{\left(P_{N_{2}} / P^{\ominus}\right)^{2}}{P_{N_{2} O_{4}} / P^{\ominus}}=\frac{4 \alpha^{2}}{1-\alpha^{2}} \frac{P}{P^{\ominus}} \\
K(298)=0.320 \quad K(308)=0.667 \\
\ln \frac{K_{2}}{K_{1}}=\frac{\Delta_{r, m} H^{\ominus}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right) \\
\ln \frac{0.667}{0.320}=\frac{\Delta_{r, m} H^{\ominus}}{8.3144 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}}\left(\frac{1}{298 \mathrm{~K}}-\frac{1}{308 \mathrm{~K}}\right) \quad \Delta_{r, m} H^{\ominus}=56000 \mathrm{~J} \mathrm{~mol}^{-1} \\
\Delta_{r, m} G^{\ominus}=-R T \ln K=-\left(8.3144 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(298 \mathrm{~K}) \ln 0.323=2823 \mathrm{~J} \mathrm{~mol}^{-1} \\
\Delta_{r, m} S^{\ominus}=\frac{\Delta_{r, m} H^{\ominus}-\Delta_{r, m} G^{\ominus}}{T}=178 \mathrm{~J} \mathrm{~K}^{-1} \\
\Delta_{r, m} U=\Delta_{r, m} H^{\ominus}-R T \Delta n_{g a s}=56000 \mathrm{~J} \mathrm{~mol}^{-1}-\left(8.3144 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(298 \mathrm{~K})(1)=53500 \mathrm{~J} \mathrm{~mol}^{-1}
\end{gathered}
$$

5. At 298 K the EMF of the cell

$$
\mathrm{Cd}_{(s)}\left|\mathrm{CdSO}_{4(s)}\right| \mathrm{SO}_{4(a q)}^{2-}(a=0.753)| | \mathrm{Cl}_{(a q)}^{-}(a=0.215)\left|\mathrm{Cl}_{2(g)}\left(P / P^{\circ}=2.50\right)\right| \mathrm{Pt}_{(s)}
$$

is 1.652 V . Given the half-cell potentials of the chlorine and cadmium sulfate electrodes to be respectively $E_{\mathrm{Cl}^{-} / C l_{2} / P t}^{\circ}=1.35827 \mathrm{~V}$ and $E_{\mathrm{SO}_{4}^{2-} / \mathrm{CdSO}_{4} / \mathrm{Cd}}^{\circ}=-0.246 \mathrm{~V}$, calculate the fugacity coefficient of the chlorine gas in the cell.
Answer:

$$
\begin{gathered}
\text { Right : } \mathrm{Cl}_{2(g)}+2 e^{-} \longrightarrow 2 \mathrm{Cl}_{(a q)}^{-} \\
\text {Left }: \frac{\mathrm{CdSO}_{4(s)}+2 e^{-} \longrightarrow \mathrm{Cd}_{(s)}+\mathrm{SO}_{4(a q)}^{2-}}{\text { Overall }: \mathrm{Cl}_{2(g)}+\mathrm{Cd}_{(s)}+\mathrm{SO}_{4(a q)}^{2-} \longrightarrow 2 \mathrm{Cl}_{(a q)}^{-}+\mathrm{CdSO}_{4(s)}} \\
E^{\ominus}=E_{R}^{\ominus}-E_{L}^{\ominus}=1.60427 \mathrm{~V} \\
Q=\frac{\left(a_{C l^{-}}\right)^{2}}{a_{S O_{4}^{2-} f_{C l_{2}} / P^{\ominus}}} \\
E=E^{\ominus}-\frac{R T}{n F} \ln Q \\
1.6524 \mathrm{~V}=1.60427 \mathrm{~V}-\frac{\left(8.3144 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(298 \mathrm{~K})}{2\left(96485 \mathrm{C} \mathrm{~mol}^{-1}\right)} \ln \frac{(0.215)^{2}}{(0.753) f / P^{\ominus}} \\
f=2.60 \mathrm{bar}=\gamma P=\gamma(2.50 \mathrm{bar}) \quad \gamma=1.04
\end{gathered}
$$

Name:
6. The enthalpy of vaporization of rubbing alcohol (liquid isopropan-2-ol, $\mathrm{CH}_{3} \mathrm{CHOHCH}_{3}$) is $\Delta_{\text {vap }, m} H=44.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$, and the vapor pressure of rubbing alcohol is 5.79×10^{-2} bar at 296 K . A 10.00 L tank fitted with a frictionless piston contains excess liquid rubbing alcohol in equilibrium with its vapor, and the assembly is immersed in a heat bath at a fixed temperature of 308 K . The piston is compressed isothermally against a constant external pressure of 1.00 bar to a final volume of 5.00 L . Calculate $q, w, \Delta U, \Delta H, \Delta S$ and ΔG for the compression process.

Answer:

$$
\begin{aligned}
& \ln \frac{P_{308}}{P_{296}}=\frac{\Delta_{v a p, m} H}{R}\left(\frac{1}{296 \mathrm{~K}}-\frac{1}{308 \mathrm{~K}}\right) \\
& \ln \frac{P_{308}}{5.79 \times 10^{-2} \mathrm{bar}}=\frac{44000 \mathrm{~J} \mathrm{~mol}^{-1}}{\left(8.3144 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)}\left(\frac{1}{296 \mathrm{~K}}-\frac{1}{308 \mathrm{~K}}\right) \quad P_{308}=0.116 \mathrm{bar} \\
& w=-P_{\text {ext }} \Delta V=-(1.00 \operatorname{bar})(5.00 \mathrm{~L}-10.0 \mathrm{~L})=5.00 \mathrm{~L} \text { bar }=500 \mathrm{~J} \\
& \Delta n=\frac{P \Delta V}{R T}=\frac{(0.116 \mathrm{bar})(-5.00 \mathrm{~L})}{\left(0.083144 \mathrm{~L} \text { bar } \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)(308 \mathrm{~K})}=-2.26 \times 10^{-2} \mathrm{~mol} \\
& \Delta H=\left(2.26 \times 10^{-2} \mathrm{~mol}\right)\left(-44000 \mathrm{~J} \mathrm{~mol}^{-1}\right)=-994 \mathrm{~J} \\
& \Delta U=\Delta H-\Delta(P V)=\Delta H-R T \Delta n=-994 \mathrm{~J}-\left(8.3144 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(308 \mathrm{~K})\left(-2.26 \times 10^{-2} \mathrm{~mol}\right)=-936 \mathrm{~J} \\
& q=\Delta U-w=-1436 \mathrm{~J} \\
& \Delta S=\frac{\Delta H}{T}=\frac{994 \mathrm{~J}}{308 \mathrm{~K}}=3.24 \mathrm{~J} \mathrm{~K}^{-1} \\
& \Delta G=\Delta H-T \Delta S=0
\end{aligned}
$$

