## Chemistry 431

## Exam Number 2

Fall 2023
50 Minutes Solutions

$$
\begin{gathered}
R=8.3144 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
R=.08314 \mathrm{~L} \text { bar mol } \\
k=1.381 \times 10^{-23} \mathrm{~J}^{-1} \\
h=6.626 \times 10^{-34} \mathrm{Js} \\
N_{A}=6.022 \times 10^{23} \mathrm{molecules} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
1 \mathrm{~kg}=1000 . \mathrm{g} \\
1 \mathrm{~L}=10^{3} \mathrm{~cm}^{3} \\
10^{2} \mathrm{~cm}=1 \mathrm{~m} \\
T=t+273.15 \\
0.001 \mathrm{~m}^{3} \mathrm{~L}^{-1}
\end{gathered}
$$

Name:

1. Show that for any substance

$$
\left(\frac{\partial P}{\partial V}\right)_{H}=-\frac{1}{\kappa V}-\frac{\beta_{V}}{\kappa} \frac{\left(\frac{\partial H}{\partial V}\right)_{T}}{\left(\frac{\partial H}{\partial T}\right)_{V}}
$$

where $\beta_{V}$ is the isobaric coefficient of thermal expansion and $\kappa$ is the isothermal compressibility.
(33 Points)
Answer:

$$
\begin{aligned}
d P & =\left(\frac{\partial P}{\partial T}\right)_{V} d T+\left(\frac{\partial P}{\partial V}\right)_{T} d V \\
\left(\frac{\partial P}{\partial V}\right)_{H} & =\left(\frac{\partial P}{\partial T}\right)_{V}\left(\frac{\partial T}{\partial V}\right)_{H}+\left(\frac{\partial P}{\partial V}\right)_{T} \\
& =\left(\frac{\partial P}{\partial T}\right)_{V}\left(\frac{\partial T}{\partial V}\right)_{H}-\frac{1}{\kappa V}
\end{aligned}
$$

where $\kappa=-V^{-1}(\partial V / \partial P)_{T}$ is the isobaric coefficient of thermal expansion. Now

$$
\left(\frac{\partial P}{\partial T}\right)_{V}\left(\frac{\partial T}{\partial V}\right)_{P}\left(\frac{\partial V}{\partial P}\right)_{T}=-1
$$

or

$$
\left(\frac{\partial P}{\partial T}\right)_{V}=-\frac{\left(\frac{\partial V}{\partial T}\right)_{P}}{\left(\frac{\partial V}{\partial P}\right)_{T}}=\frac{\beta_{V}}{\kappa}
$$

where $\beta_{V}=V^{-1}(\partial V / \partial T)_{P}$ is the isobaric coefficient of thermal expansion. Then

$$
\left(\frac{\partial P}{\partial V}\right)_{H}=-\frac{1}{\kappa V}+\frac{\beta_{V}}{\kappa}\left(\frac{\partial T}{\partial V}\right)_{H}
$$

Finally,

$$
\left(\frac{\partial T}{\partial V}\right)_{H}\left(\frac{\partial V}{\partial H}\right)_{T}\left(\frac{\partial H}{\partial T}\right)_{V}=-1
$$

and

$$
\left(\frac{\partial T}{\partial V}\right)_{H}=-\frac{\left(\frac{\partial H}{\partial V}\right)_{T}}{\left(\frac{\partial H}{\partial T}\right)_{V}}
$$

Name:

SO

$$
\left(\frac{\partial P}{\partial V}\right)_{H}=-\frac{1}{\kappa V}-\frac{\beta_{V}}{\kappa} \frac{\left(\frac{\partial H}{\partial V}\right)_{T}}{\left(\frac{\partial H}{\partial T}\right)_{V}}
$$

2. A bomb calorimeter of fixed volume has a measured heat capacity of $2246 \mathrm{~J} \mathrm{~K}^{-1}$. When 0.125 grams of liquid methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ are burned in excess oxygen in the bomb calorimeter according to the balanced reaction

$$
\mathrm{CH}_{3} \mathrm{OH}_{(\ell)}+\frac{3}{2} \mathrm{O}_{2(g)} \longrightarrow \mathrm{CO}_{2(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(g)}
$$

the temperature of the calorimeter rises from 298.15 K to 299.27 K . Given that the standard molar enthalpies of formation of carbon dioxide gas and gas-phase water at 298.15 K are respectively $\Delta_{f, m} H^{\ominus}\left(\mathrm{CO}_{2(g)}\right)=-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta_{f, m} H^{\ominus}\left(\mathrm{H}_{2} \mathrm{O}_{(g)}\right)=-241.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$, calculate the standard molar enthalpy of formation of liquid methanol at 298.15 K .
(33 Points)
Answer:

$$
\begin{gathered}
q=\Delta_{r} U=-C \Delta T=-\left(2246 \mathrm{~J} \mathrm{~K}^{-1}\right)(299.27 \mathrm{~K}-298.15 \mathrm{~K})=-2515 \mathrm{~J} \\
n=\frac{0.125 \mathrm{~g}}{32.0 \mathrm{~g} \mathrm{~mol}^{-1}}=3.91 \times 10^{-3} \mathrm{~mol} \quad \Delta_{r, m} U=\frac{-2515 \mathrm{~J}}{3.91 \times 10^{-3} \mathrm{~mol}}=-643355 \mathrm{~J} \mathrm{~mol}^{-1} \\
\Delta_{r, m} H^{\ominus}=\Delta_{r, m} U+R T \Delta n=-643355 \mathrm{~J} \mathrm{~mol}^{-1}+\left(8.3144 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(298 \mathrm{~K})(1.5)=-639.63 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
=\Delta_{f, m} H^{\ominus}\left(\mathrm{CO}_{2(g)}\right)+2 \Delta_{f, m} H^{\ominus}\left(\mathrm{H}_{2} \mathrm{O}_{(g)}\right)-\Delta_{f, m} H^{\ominus}\left(\mathrm{CH}_{3} \mathrm{OH}(\ell)\right) \\
=-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}+2\left(-241.8 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)-\Delta_{f, m} H^{\ominus}\left(\mathrm{CH}_{3} \mathrm{OH}(\ell)\right) \\
\Delta_{f, m} H^{\ominus}\left(\mathrm{CH}_{3} \mathrm{OH}_{(\ell)}\right)=-237.5 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{gathered}
$$

3. Calculate the entropy change for the system, surroundings and universe when 20.0 grams of ice at $-10.0^{\circ} \mathrm{C}$ are placed in a freezer with the thermostat set to $-40.0^{\circ}$ and allowed to come to equilibrium at constant pressure. The constant pressure heat capacity of solid water is $C_{P}=37.6 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ and can be assumed to be temperature independent. ( 34 Points)
Answer:

$$
\begin{gathered}
n=\frac{20.0 \mathrm{~g}}{18.0 \mathrm{~g} \mathrm{~mol}}=1.11 \mathrm{~mol} \\
\Delta S_{\text {system }}=C_{P} \ln \frac{T_{f}}{T_{i}}=(1.11 \mathrm{~mol})\left(37.6 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \ln \frac{233}{263}=-5.05 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
q_{\text {system }}=C_{P} \Delta T=(1.11 \mathrm{~mol})\left(37.6 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(-30 . \mathrm{K})=-1253 \mathrm{~J} \\
\Delta S_{\text {surroundings }}=\frac{-q_{\text {system }}}{T_{\text {surroundings }}}=\frac{1253 \mathrm{~J}}{233 \mathrm{~K}}=5.37 \mathrm{~J} \mathrm{~K} \\
\Delta S_{\text {universe }}=\Delta S_{\text {system }}+\Delta S_{\text {surroundings }}=0.32 \mathrm{~J} \mathrm{~K}^{-1}>0
\end{gathered}
$$



Figure 1: High $=100$, Median $=79$, Mean $=73$

