Chemistry 431

Exam Number 1

Fall 2023
Solutions

$$
\begin{gathered}
R=8.3144 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
R=.08314 \mathrm{~L} \text { bar mol } \\
k=1.381 \times 10^{-23} \mathrm{~K}^{-1} \\
h=6.626 \times 10^{-34} \mathrm{Js} \\
N_{A}=6.022 \times 10^{23} \mathrm{molecule}^{-1} \mathrm{~K}^{-1} \\
1 \mathrm{~kg}=1000 . \mathrm{g} \\
1 \mathrm{~L}=10^{3} \mathrm{~cm}^{3} \\
10^{2} \mathrm{~cm}=1 \mathrm{~m} \\
T=t+273.15 \\
0.001 \mathrm{~m}^{3} \mathrm{~L}^{-1}
\end{gathered}
$$

Name:

1. Consider the one-dimensional collision between an oxygen atom and a carbon monoxide molecule to form a carbon dioxide molecule in the reaction

$$
\mathrm{O}_{(g)}+\mathrm{CO}_{(g)} \longrightarrow \mathrm{OCO}_{(g)} .
$$

For the one-dimensional collision where the oxygen atom collides directly with the carbon atom of the diatomic molecule, when the initial velocity of the CO molecule is 0 , the change in the vibrational energy of the system from the collision is found to be $7.521 \times 10^{-21} \mathrm{~J}$. Calculate the initial velocity of the oxygen atom.

Answer:

$$
\begin{gathered}
m_{O} v_{i, O}=m_{\mathrm{CO}_{2}} v_{f} \\
\Delta \mathrm{KE}=7.521 \times 10^{-21} \mathrm{~J}=\frac{1}{2} m_{O} v_{i, O}^{2}-\frac{1}{2} m_{\mathrm{CO}_{2}} v_{f}^{2} \\
7.521 \times 10^{-21} \mathrm{~J}=\frac{1}{2} m_{O} v_{i, O}^{2}-\frac{1}{2} m_{C O_{2}}\left(\frac{m_{O} v_{O, i}}{m_{C O_{2}}}\right)^{2} \\
=\frac{1}{2} m_{O} v_{i, O}^{2}-\frac{1}{2} \frac{m_{O, i}^{2}}{m_{C O_{2}}} v_{O, i}^{2} \\
=\frac{1}{2}\left(\frac{10.18 \mathrm{~kg}}{6.022 \times 10^{26}}\right) v_{O, i}^{2} \quad v_{O, i}=943.2 \mathrm{~m} \mathrm{~s}^{-1}
\end{gathered}
$$

2. In a two-step process, 2.50 mol of an ideal diatomic gas are initially placed in a cylinder fitted with a frictionless piston where the initial temperature is 298 K and the initial pressure is 2.00 bar. In the first step of the process, the gas is heated at constant pressure until $q=600$ J. In the second step, the gas is compressed reversibly and isothermally until the final volume is half the system volume at the end of the first step. Calculate $q, w, \Delta U$ and ΔH for the overall, two-step process.
Answer:

$$
\begin{gathered}
600 \mathrm{~J}=C_{P}\left(T_{f}-T_{i}\right) \\
=\frac{7}{2}(2.50 \mathrm{~mol})\left(8.3144 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)\left(T_{1}-298 \mathrm{~K}\right) \quad T_{1}=306.2 \mathrm{~K} \\
q_{2}=n R T_{1} \ln \frac{1}{2}=(2.50 \mathrm{~mol})\left(8.3144 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(306.2 \mathrm{~K}) \ln \frac{1}{2}=-4412 \mathrm{~J} \\
q=q_{1}+q_{2}=600 \mathrm{~J}-4412 \mathrm{~J}=-3812 \mathrm{~J} \\
\Delta U=C_{V} \Delta T=\frac{5}{2}(2.50 \mathrm{~mol})\left(8.3144 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(306.2 \mathrm{~K}-298 \mathrm{~K})=426 \mathrm{~J} \\
\Delta H=\frac{7}{5} \Delta U=597 \mathrm{~J} \\
w=\Delta U-q=4238 \mathrm{~J}
\end{gathered}
$$

3. Each of two distinct samples of 1.50 moles ideal monatomic gas both at $T=298 \mathrm{~K}$ and a pressure of 3.25 bar are labeled samples A and B. Samples A and B are placed in separate cylinders fitted with frictionless pistons. Sample A is allowed to expand adiabatically against a constant external pressure of 1.25 bar until equilibrium is reached. Sample B expands reversibly and adiabatically until its final volume is identical to the final volume of sample A. Calculate w_{A} and w_{B}, the work done respectively for samples A and B.

Answer:

Sample A:

$$
\begin{gathered}
-P_{e x t}\left(\frac{n R T_{f}}{P_{e x t}}-\frac{n R T_{i}}{P}\right)=C_{V}\left(T_{f}-T_{i}\right) \\
-T_{f}+\frac{1.25}{3.25}(298 \mathrm{~K})=\frac{3}{2}\left(T_{f}-298 \mathrm{~K}\right) \quad T_{f}=225 \mathrm{~K} \\
w_{A}=\Delta U=C_{V} \Delta T=\frac{3}{2}(1.50 \mathrm{~mol})\left(8.3144 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(225 \mathrm{~K}-298 \mathrm{~K})=-1366 \mathrm{~J}
\end{gathered}
$$

Sample B:

$$
\begin{gathered}
V_{f}=\frac{n R T_{f}}{P_{e x t}}=\frac{(1.50 \mathrm{~mol})\left(0.083144 \mathrm{~L} \mathrm{bar} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(225 \mathrm{~K})}{1.25 \mathrm{bar}}=22.45 \mathrm{~L} \\
V_{i}=\frac{n R T_{i}}{P_{i}}=\frac{(1.50 \mathrm{~mol})\left(0.083144 \mathrm{~L} \mathrm{bar} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(298 \mathrm{~K})}{3.25 \mathrm{bar}}=11.43 \mathrm{~L} \\
T_{i} V_{i}^{\gamma-1}=T_{f} V_{f}^{\gamma-1} \\
w_{B}=\Delta U=C_{V} \Delta T=\frac{3}{2}(1.50 \mathrm{~mol})\left(8.3144 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(190 \mathrm{~K}-298 \mathrm{~K})=-2020 \mathrm{~J}
\end{gathered}
$$

Figure 1: High $=100$, Median $=56$, Mean $=55$

