
Chemistry 432

Problem Set 10

Spring 2020

Solutions
1. Consider the molecule

H2 − C = C = C− H2

Use Hückel theory to determine the electronic energy of the π-electrons in the molecule,
and predict whether the binding energy of the molecule would increase or decrease by
the addition of an electron to form C3H

−
4 .

Answer: ∣∣∣∣∣∣∣
α− E β 0
β α− E β
0 β α− E

∣∣∣∣∣∣∣ = (α− E)[(α− E)2 − β2]− β2(α− E)

= (α− E)[(α− E)2 − 2β2] = 0

Then
E = α, α±

√
2β

α−
√

2β
↑↓ α

↑↓ α +
√

2β

Eπ = 4α + 2
√

2β

C3H
−
4 is less strongly bound, because the extra electron fills an anti-bonding orbital.

2. Use Hückel theory to predict the electronic configuration of the benzene anion and the
benzene cation. Estimate the π-energy in each case.
Answer:
Anion

α− 2β

↑ α− β

↑↓ ↑↓ α + β

↑↓ α + 2β
Eπ = 2(α + 2β) + 4(α + β) + α− β = 7α + 7β
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Cation

α− 2β

α− β

↑↓ ↑ α + β

↑↓ α + 2β
Eπ = 2(α + 2β) + 3(α + β) = 5α + 7β

3. Consider the C3H3· radical containing a total of three π electrons as pictured below. Set
up the Hückel determinant for the radical, and expand the determinant to give a cubic
equation for the energies of the system. Given the solutions to the cubic equation are
E = α+ 2β, α−β, and α−β, calculate the π-electron energy for C3H3·. Compare the
π-electron energy for C3H3· with the π-electron energy for C3H

−
3 , and predict whether

the radical or the anion is most strongly bound.

H

H
H

Answer: ∣∣∣∣∣∣∣
α− E β β
β α− E β
β β α− E

∣∣∣∣∣∣∣ = 0

(α− E)[(α− E)2 − β2]− β[β(α− E)− β2] + β[β2 − β(α− E)] = 0

↑ α− β
↑↓ α + 2β

E·π = 2α + 4β + α− β = 3α + 3β

↑ ↑ α− β
↑↓ α + 2β

E−π = 2α + 4β + 2α− 2β = 4α + 2β

The radical has fewer antibonding electrons and is more strongly bound.
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4. The allyl radical has two equivalent resonance structures

CH2=CH-CH2· ↔ CH2-CH=CH2·

Construct the Hückel determinant for the allyl radical and expand the determinant
to give the secular equation for the energies of the π orbitals. Given the solutions to
the resulting cubic equation are E = α +

√
2β, α and α −

√
2β, calculate the total

π-electron energy in terms of α and β.
Answer: ∣∣∣∣∣∣∣

α− E β 0
β α− E β
0 β α− E

∣∣∣∣∣∣∣ = (α− E)[(α− E)2 − β2]− β2(α− E)

= (α− E)[(α− E)2 − 2β2] = 0

The energy ordering of the orbitals is α+
√

2β < α < α−
√

2β. There are 3 π electrons
so the total π-electron energy is

Eπ = 2(α +
√

2β) + α = 3α + 2
√

2β

5. Consider the KNa molecule, and let 3s be the 3s-orbital centered about the soduium
nucleus and 4s be the 4s-orbital centered about the potassium nucleus.

(a) Regarding KNa as being formed entirely from the 3s-orbital centered about the
Na atom and the 4s-orbital centered about the K atom, give the molecular orbital
wavefunction for KNa.
Answer:

ψmo = N [3s(1) + 4s(1)][3s(2) + 4s(2)]

(b) In terms of 3s and 4s, give the covalent valence bond wavefunction for KNa. Give
the resonance structure implied by this wavefunction.
Answer:

ψvb = N ′[3s(1)4s(2) + 3s(2)4s(1)] K-Na

(c) Give two singly ionized resonance structures for KNa and give the associated
terms in the molecular wavefunction.
Answer:

ψion1 = 3s(1)3s(2) Na−K+

ψion2 = 4s(1)4s(2) Na+K−

6. Write the valence-bond wavefunction for the LiH molecule regarding it as being formed
entirely from an H 1s-orbital and a Li 2s-orbital. Give the wavefunction under the
assumptions
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(a) that the molecule is pure covalent;
Answer:

ψcovalent = N [1s(1)2s(2) + 1s(2)2s(1)]

(b) that the molecule is pure ionic [include only the chemically important resonance
structure with the negative charge on the hydrogen atom];
Answer:

ψionic = N ′1s(1)1s(2)

(c) that the molecule is 60 per cent covalent and 40 percent ionic.
Answer:

ψ = c1ψcovalent + c2ψionic

|c1|2 = .6 c1 = .77

|c2|2 = .4 c2 = .63

ψ = .77ψcovalent + .63ψionic

7. The electronic absorption spectrum of KH from its ground to first excited electronic
state has vibrational fine structure with two adjacent lines at 22478 cm−1 and 22706
cm−1. The fluorescence spectrum from the excited electronic state to the ground
state also shows vibrational fine structure with two adjacent lines at 11321 cm−1 and
10341 cm−1. Assume both the ground electronic state and the excited electronic state
potential curves to be pure harmonic oscillators.

(a) Calculate the fundamental frequency of vibration of the electronic ground state.
Answer:

∆
(

1

λ

)
= 11321cm−1 − 10341cm−1 = 980cm−1

ν = (980cm−1)(2.998× 1010cm s−1) = 2.94× 1013s−1

(b) Calculate the fundamental frequency of vibration of the electronic excited state.
Answer:

∆
(

1

λ

)
= 22706cm−1 − 22478cm−1 = 228cm−1

ν = (228cm−1)(2.998× 1010cm s−1) = 6.835× 1012s−1

(c) Calculate the period of vibration of the ground state.
Answer:

τ = ν−1 = 3.404× 10−14s

8. The electronic absorption spectrum of the N2 molecule from the ground electronic state
to an excited electronic state consists of a series of spectral lines adjacent members of
which occur at frequencies 69283.06 cm−1, 70977.26 cm−1, 72671.46 cm−1, . . .. The
electronic fluorescence emission spectrum of N2 between the same excited electronic
state and the ground state consists of adjacent spectral lines at frequencies 69283.06
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cm−1, 66924.49 cm−1, 64565.92 cm−1, . . .. Calculate the vibrational force constant in
the N2 molecule in its ground electronic state. You should assume both the ground
and excited electronic states to be represented by pure harmonic potential curves.
Answer:

∆νemission = 69283.06cm−1 − 66924.49cm−1 = 2358.6cm−1

(2358.6cm−1)(2.998× 1010cm s−1) = 7.08× 1013s−1

ω = 2πν = 4.45× 1014s−1

k = µω2 =
142

28

1

6.022× 1026
kg(4.45× 1014s−1)2 = 2300N m−1

9. In the electronic fluorescence spectrum of CO, the transition from the ground vibra-
tional state of the first excited electronic state of the CO molecule to the ground
vibrational state of the ground electronic state occurs at 66593.9 cm−1. The force
constant of CO in its ground state electronic is 1.86 ×103 N m−1. Assuming a pure
harmonic oscillator potential energy curve, calculate the location of second spectral
line in the fluorescence spectrum; i.e. the first line adjacent to the line at 66593.9
cm−1.
Answer:

k = 4π2µν2

νosc =
1

2π

√
k

µ

=
1

2π

√√√√√√ 1.86× 103N m−1

(12)(16)

12 + 16

kg

6.022× 1026

= 6.43× 1013 s−1

νosc =
6.43× 1013s−1

2.998× 1010 cm s−1
= 2145.6 cm−1

ν2 = 66593.9 cm−1 − 2145.6 cm−1 = 64448.3 cm−1

10. The n = 0 to n = 0 (n represent the vibrational quantum numbers) spectroscopic,
electronic transition between the ground and first excited electronic states in the CH
molecule is measured to be 23189. cm−1. The harmonic force constants for the ground
electronic state and the first excited electronic states are respectively kgs = 444.4 N
m−1 and kes = 467.2 N m−1. Calculate the frequency of the absorption line between the
n = 0 vibrational state of the ground electronic state and the n = 5 vibrational line of
the excited electronic state. Also, calculate the frequency in the fluorescence spectrum
from the n = 0 vibrational state of the excited electronic state to the n = 2 vibrational
state of the ground electronic state. You should assume both the ground and excited
electronic potential curves are accurately represented by harmonic oscillators.
Answer:

k = 4π2µν2 ν =

√
k

4π2µ
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µ =

(
(1.0)(12.0)

13.0

)
kg

6.022× 1026
= 1.533× 10−27 kg

νgs =

[
444.4 N m−1

4π2(1.533× 10−27 kg

]1/2
s

2.998× 1010 cm
= 2858.3 cm−1

νes =

[
467.2 N m−1

4π2(1.533× 10−27 kg

]1/2
s

2.998× 1010 cm
= 2930.7 cm−1

Absorption
23189. cm−1 + 5(2930.7) cm−1 = 37843. cm−1

Fluorescence
23189. cm−1 − 2(2858.3) cm−1 = 17472. cm−1

11. The electronic absorption spectrum of the SB molecule in the gas phase between the
ground electronic state and first excited electronic state consists of a series of lines at
frequencies 15876. s−1, 16630 s−1, 17384 s−1 . . .. The lines in the fluorescence spectrum
between the same two electronic states has spectral lines at 15876 s−1, 14696 s−1, 13516
s−1, . . .. Let kgs be the force constant for SB in the ground electronic state and kes be
the excitied-state force constant. Calculate the value of the ratio kes/kgs.
Answer:

νgs = (15876.− 14696.) s−1 = 1180. s−1

νes = (16630.− 15876.) s−1 = 754. s−1

k = 4π2µν2

so
kes
kgs

=
(

754.

1180.

)2

= 0.41

12. The electronic absorption spectrum of the gas-phase O2 molecule from its ground
electronic state to its first excited electronic state consists of a series of the series of lines
35397.8 cm−1, 36196.9 cm−1, 36995.9 cm−1 . . .. The fluorescence emission spectrum
connecting the same two electronic states consists of the series of lines 35397.8 cm−1,
33817.6 cm−1, 32237.4 cm−1 . . .. Assuming both the ground-state and excited-state
potential curves are harmonic, calculate the ratio of the Hooke’s law force constants of
the ground to excited electronic states.
Answer:

νgs = (35397.8 cm−1 − 33817.6 cm−1)(2.998× 1010 cm s−1) = 4.7374× 1013 s−1

νes = (36196.9 cm−1 − 35397.8 cm−1)(2.998× 1010 cm s−1) = 2.3597× 1013 s−1

k = 4π2µν2

kgs
kes

=
(

4.7374

2.3957

)2

= 3.910
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13. The absorption spectrum of the gas-phase F2 molecule consists of a series of lines with
wave numbers 105520.14 cm−1, 106608.33 cm−1, 107696.52 cm−1, . . . , and the fluores-
cence spectrum of the same molecule between the same two electronic states consists
of a series of lines with wave numbers 105520.14 cm−1, 104603.50 cm−1, 103686.86
cm−1, . . .. Assuming both states are well represented by harmonic forces, calculate the
vibrational period in seconds of the ground state of F2 in the gas phase.
Answer:

ν = (105520.14 cm−1 − 104603.50 cm−1)(2.998× 1010 cm s−1) = 2.748× 1013 s−1

τ =
1

ν
= 3.639× 10−14 s

14. The electronic absorption spectrum of the gas-phase AgH molecule consists of a series
of lines with wave numbers 41261. cm−1, 42850. cm−1, 44439. cm−1, . . . , and the
fluorescence spectrum of the same molecule between the same two electronic states
consists of a series of lines with wave numbers 41261. cm−1, 39501. cm−1, 37741.
cm−1, . . .. Let τgs be the vibrational period of the ground state of AgH and let τes
be the vibrational period of the excited state of AgH. Assuming both states are well
represented by harmonic forces, calculate the ratio τes/τgs.
Answer:
Ground State

νgs = ∆νphotons = (41261. cm−1−39501. cm−1)(2.998×1010 cm s−1) = 5.276×1013 s−1

τgs =
1

νgs
= 1.895× 10−14 s

Excited State

νes = ∆νphotons = (42850. cm−1−41261. cm−1)(2.998×1010 cm s−1) = 4.764×1013 s−1

τes =
1

νes
= 2.099× 10−14 s

τes
τgs

=
2.099

1.895
= 1.108

15. The electronic absorption spectrum of the gas-phase zirconium oxide (ZrO) molecule
consists of a series of lines with wave numbers 15333. cm−1, 16192. cm−1, 17051.
cm−1, . . . , and the fluorescence spectrum of the same molecule between the same two
electronic states consists of a series of lines with wave numbers 15333. cm−1, 14363.
cm−1, 13394. cm−1, . . .. Let τgs be the vibrational period of the ground state of ZrO
and let τes be the vibrational period of the excited state of ZrO. Assuming both states
are well represented by harmonic forces, calculate the ratio τes/τgs.
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Answer:
Ground State

νgs = ∆νphotons = (15333. cm−1−14363. cm−1)(2.998×1010 cm s−1) = 2.908×1013 s−1

τgs =
1

νgs
= 3.439× 10−14 s

Excited State

νes = ∆νphotons = (16192. cm−1−15333. cm−1)(2.998×1010 cm s−1) = 2.575×1013 s−1

τes =
1

νes
= 3.883× 10−14 s

τes
τgs

=
3.883

3.439
= 1.129
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