Set up a Born-Haber cycle for aluminum nitride:
Al(s) + ½N2(g)→ AlN(s) | ΔHfo = –318.0 kJ |
Al(s) →Al(g) | S = 330.0 kJ |
½N2(g) →N(g) | ½BDE = ½(941.66) = 470.8 kJ (Table 2.8) |
Al(g) →Al3+(g) + 3e– | IP1 + IP2 + IP3
= (5.986 + 18.828 + 28.447)×96.4869
= 5139.0 kJ (Table 1.7) |
N(g) ) + 3e– →N3–(g) | –(EA1 + EA2 + EA3) |
Al3+(g) + N3–(g) →AlN(s) | –Elat |
–ΔHfo + S + ½BDE + (IP1 + IP2 + IP3) – (EA1 + EA2 + EA3) – Elat = 0
(EA1 + EA2 +EA3) = –ΔHfo
+ S + ½BDE + (IP1 + IP2 +IP3) –
Elat
Elat must be estimated using the Born-Landé equation. For the wurtzite structure M = 1.64132 (Table 5.12). The Born exponent can be estimated using electron configurations: both Al3+ and N3– have the [Ne] configuration so n = 7. The ions have CN = 4 in the wurtzite structure so the ionic radii are r+ = 53 pm (Table 5.8) and r– ~ 132 pm (Table 5.10 for CN = 6, CN = 4 is unavailable), so ro ~ 53 + 132 = 185 pm.
Elat = 9506800 J/mol = 9506.8 kJ/mol
Now, substituting all the known values:
(EA1 + EA2 +EA3) = –(–318.0) + (330.0) + (470.8) + (5139.0) – (9506.8) = –3249.0 kJ
This is a reasonable value; EA1 for N is –7 kJ/mol and adding subsequent electrons to a negative ion should be increasingly disfavored thermodynamically.