1. Cyclobutadiene, shown below, is an antiaromatic molecule (that is, the π electrons do not delocalize around the ring). In this problem you will construct the molecular orbital diagram for the π system by considering each π orbital as a group orbital on the carbon atoms. Use the axis system shown (z is perpendicular to the page) and the pz orbitals on each carbon atom as the basis set. Find the irreducible representations of the π orbitals. Use the projection operator technique to find the wavefunctions of each of the π orbitals. Sketch each of these orbitals. Energy order the orbitals and show the electron occupation in your MO diagram.

Number the C atoms. Cyclobutadiene belongs to the D2h point group:
 
D2h
E
C2(z)
C2(y)
C2(x)
i
σ(xy)
σ(xz)
σ(yz)
   
ag
1
1
1
1
1
1
1
1
  x2, y2, z2
b1g
1
1
-1
-1
1
1
-1
-1
Rz xy
b2g
1
-1
1
-1
1
-1
1
-1
Ry xz
b3g
1
-1
-1
1
1
-1
-1
1
Rx yz
au
1
1
1
1
-1
-1
-1
-1
   
b1u
1
1
-1
-1
-1
-1
1
1
z  
b2u
1
-1
1
-1
-1
1
-1
1
y  
b3u
1
-1
-1
1
-1
1
1
-1
x  

Total representation for the π orbitals:
 
E
C2(z)
C2(y)
C2(x)
i
σ(xy)
σ(xz)
σ(yz)
pz
4
0
0
0
0
-4
0
0

This reduces to b2g + b3g + au + b1u

Rotation operator:
 
 
E
C2(z)
C2(y)
C2(x)
i
σ(xy)
σ(xz)
σ(yz)
Rp1z
p1z
p3z
-p4z
-p2z
-p3z
-p1z
p2z
p4z

Projection operator:

P(b2g) = p1z - p3z - p4z + p2z - p3z + p1z + p2z - p4z



1 node between the sigma (long) bonds
 
 

P(b3g) = p1z - p3z + p4z - p2z - p3z + p1z - p2z + p4z



1 node between the pi (short) bonds
 

P(au) = p1z + p3z - p4z - p2z + p3z + p1z - p2z - p4z



2 nodes
 

P(b1u) = p1z + p3z + p4z + p2z + p3z + p1z + p2z + p4z



0 nodes
 

Energy Level Diagram: