Find the irreducible representations for the σ orbitals for the following:
a. PF3
b. ICl3
a. PF3
Point Group: C3v
C3v
E
2C3
3σv
a1
1
1
1
z
x2 + y2, z2
a2
1
1
–1
Rz
e
2
–1
0
(Rx, Ry) (x, y)
(x2–y2, xy) (xz,yz)
σ bonds
3
0
1
n(a1) = [(1)(1)(3) + (2)(1)(0) + (3)(1)(1)]/6 = 1
n(a2) = [(1)(1)(3) + (2)(1)(0) + (3)(–1)(1)]/6 = 0
n(e) = [(1)(2)(3) + (2)(–1)(0) + (3)(0)(1)]/6 = 1
Thus, the σ orbitals transform as a1 + e
b. ICl3
Point Group: C2v
C2v
E
C2
σv (xz)
σv' (yz)
a1
1
1
1
1
z
x2, y2, z2
a2
1
1
–1
–1
Rz
xy
b1
1
–1
1
–1
Ry x
xz
b2
1
–1
–1
1
Rx y
yz
σ bonds
3
1
3
1
n(a1) = [(1)(1)(3) + (1)(1)(1) + (1)(3)(1) + (1)(1)(1)]/4 = 2
n(a2) = [(1)(1)(3) + (1)(1)(1) + (1)(–1)(3) + (1)(–1)(1)]/4 = 0
n(b1) = [(1)(1)(3) + (1)(–1)(1) + (1)(1)(3) + (1)(–1)(1)]/4 = 1
n(b2) = [(1)(1)(3) + (1)(–1)(1) + (1)(–1)(3) + (1)(1)(1)]/4 = 0
Thus, the σ orbitals transform as 2a1 + b1