Homework 3

Due Thursday, Feb. 21, 2019 at 3:15 p.m. EST

Find the irreducible representations for the σ orbitals for the following:

a. PF3

b. ICl3

Answer

a. PF3

Point Group: C3v

C3v

E

2C3

v

 

 

a1

1

1

1

z

x2 + y2, z2

a2

1

1

–1

Rz

 

e

2

–1

0

(Rx, Ry) (x, y)

(x2–y2, xy) (xz,yz)

σ bonds

3

0

1

 

 

n(a1) = [(1)(1)(3) + (2)(1)(0) + (3)(1)(1)]/6 = 1

n(a2) = [(1)(1)(3) + (2)(1)(0) + (3)(–1)(1)]/6 = 0

n(e) = [(1)(2)(3) + (2)(–1)(0) + (3)(0)(1)]/6 = 1

Thus, the σ orbitals transform as a1 + e

b. ICl3

Point Group: C2v

C2v

E

C2

σv (xz)

σv' (yz)

 

 

a1

1

1

1

1

z

x2, y2, z2

a2

1

1

–1

–1

Rz

xy

b1

1

–1

1

–1

Ry x

xz

b2

1

–1

–1

1

Rx y

yz

σ bonds

3

1

3

1

 

 

n(a1) = [(1)(1)(3) + (1)(1)(1) + (1)(3)(1) + (1)(1)(1)]/4 = 2

n(a2) = [(1)(1)(3) + (1)(1)(1) + (1)(–1)(3) + (1)(–1)(1)]/4 = 0

n(b1) = [(1)(1)(3) + (1)(–1)(1) + (1)(1)(3) + (1)(–1)(1)]/4 = 1

n(b2) = [(1)(1)(3) + (1)(–1)(1) + (1)(–1)(3) + (1)(1)(1)]/4 = 0

Thus, the σ orbitals transform as 2a1 + b1