1. Complete and balance the following in aqueous solutin:
a. chlorite ion plus hydrobromic acid
b. calcium hydroxide plus perchloric acid
c. H3PO4(aq) + Zn(C2H3O2)2(aq)
d. Sc3+(aq) + H2O(l)
e. cyanate ion plus water
f. Na2S(aq) + Fe(NO3)2(aq)
g. chromate ion plus nitrite ion giving chromium 3+ ion and nitric acid
h. MnO4–(aq) + C2O42–(aq) → Mn(OH)2(s) + CO2(g)
a. ClO2–(aq) + HBr(aq) → HClO2(aq) + Br–(aq)
b. Ca(OH)2(s) + 2 HClO4(aq) → 2 H2O(l) + Ca2+(aq) + 2 ClO4–(aq)
c. 2 H3PO4(aq) + 3 Zn(C2H3O2)2(aq) → Zn3(PO4)2(s) + 6 HC2H3O2(aq)
d. Sc3+(aq) + 2 H2O(l) → ← ScOH2+(aq) + H3O+(aq)
e. OCN–(aq) + H2O(l) → ← HOCN(aq) + OH–(aq)
f. Na2S(aq) + Fe(NO3)2(aq) → FeS(s) + 2 Na+(aq) + 2 NO3–(aq)
g. chromate ion plus nitrite ion giving chromium 3+ ion and nitric acid
Oxidation: NO2–(aq) + H2O(l) → HNO3(aq) + H+(aq) + 2 e–
Reduction: CrO42–(aq) + 8 H+(aq) + 3 e– → Cr3+(aq) + 4 H2O(l)
Net: 2 CrO42–(aq) + 3 NO2–(aq) + 13 H+(aq )→ 2 Cr3+(aq) + 3 HNO3(aq) + 5 H2O(l)
h. MnO4–(aq) + C2O42–(aq) → Mn(OH)2(s) + CO2(g)
Oxidation: C2O42–(aq) → 2 CO2(g) + 2 e–
Reduction: MnO4–(aq) + 6 H+(aq) + 5 e– → Mn(OH)2(s) + 2 H2O(l)
Net in acid: 2 MnO4–(aq) + 5 C2O42–(aq) + 12 H+(aq) → 2 Mn(OH)2(s) + 10 CO2(g) + 4 H2O(l)
Neutralization: 12 H2O(l) → 12 H+(aq) + 12 OH–(aq)
Net in base: 2 MnO4–(aq) + 5 C2O42–(aq) + 8 H2O(l) → 2 Mn(OH)2(s) + 10 CO2(g) + 12 OH–(aq)
2. The data given below was found for the reaction
[Cr(NH3)5(H2O)]3+(aq) + Cl–(aq) → [Cr(NH3)5Cl]2+(aq) + H2O(l)
[[Cr(NH3)5(H2O)]3+] (M) [Cl–] (M)Initial Rate (M·s–1)
0.00100.00107.0×10–3
0.00200.00101.4×10–2
0.00200.00202.8×10–2
Find the rate law and the rate constant (including units).
Rate = –k[[Cr(NH3)5(H2O)]3+]p [Cl–]q
From experiments 1 and 2, doubling [Cr(NH3)5(H2O)]3+] while keeping [Cl–] constant doubles the rate, which means that p = 1.
From experiments 2 and 3, doubling [Cl–] while keeping [Cr(NH3)5(H2O)]3+] constant doubles the rate, which means that q = 1.
Thus, k = Rate/[Cr(NH3)5(H2O)]3+][Cl–]
k = 7.0×103 M–1s–1 for all three experiments.
3. Find the pH of a 0.10 M solution of butyric acid (C3H7CO2H).
C3H7CO2H(aq) + H2O(l) → ← H3O+(aq) + C3H7CO2–(aq)
Ka = [H3O+]e[C3H7CO2–]e/ [C3H7CO2H]e = 1.5×10–5
Initial0.1000
Change–x+x+x
Equilibrium0.10 – xxx
Approximate? 0.10/1.5×10–5 = 6700 > 100, so yes.
1.5×10–5 = x2/0.10
x = [H3O+] = 1.2×10–3 M
pH = –log(1.2×10–3) = 2.91
4. Find the molar solubility of PbBr2 in water.
PbBr2(aq) → ← Pb2+(aq) + 2 Br–(aq)
Ksp = [Pb2+]e[Br–]e2 = 4.0×10–5
Initial00
Change+x+2x
Equilibriumx2x
4.0×10–5 = (x)(2x)2 = 4x3
x = molar solubility = 2.2×10–2 M
5. Consider the reaction between Pb(OH)2(s) and HCl(g) at 25 °C.
a. Find ΔG° for the solubilization of Pb(OH)2.
b. Find ΔG° for the autoionization of water.
c. Find ΔG° for the solubilization of PbCl2.
d. Find ΔG° for the reaction of HCl(g) with water.
e. Find ΔG° for the reaction of Pb(OH)2(s) with HCl(g).
a. Pb(OH)2(s) → ← Pb2+(aq) + 2 OH–(aq)
ΔG° = –RTlnKsp = –(8.314)(298)ln(1.2×10–15) = 85100 J/mol = 85.1 kJ/mol
b. 2 H2O(l) → ← H3O+(aq) + OH–(aq)
ΔG° = –RTlnKw = –(8.314)(298)ln(1.0×10–14) = 79900 J/mol = 79.9 kJ/mol
OR ΔG° = [(–237.1) + (–157.2)] – [2(–237.2)] = 80.0 kJ/mol
a. PbCl2(s) → ← Pb2+(aq) + 2 Cl–(aq)
ΔG° = –RTlnKsp = –(8.314)(298)ln(1.6×10–5) = 27400 J/mol = 27.4 kJ/mol
d. HCl(g) + H2O(l) → H3O+(aq) + Cl–(aq)
ΔG° = [(–237.2) + (–131.2)] – [(–95.30) + (–237.2)] = –35.9 kJ/mol
e. Pb(OH)2(s) + 2 HCl(g) → PbCl2(s) + 2 H2O(l)
The reactions in parts a through d can be used to attain the desired reaction:
Pb(OH)2(s) → ← Pb2+(aq) + 2 OH–(aq) ΔG° = 85.1 kJ/mol
HCl(g) + H2O(l) → H3O+(aq) + Cl–(aq) ΔG° = –35.9 kJ/mol
HCl(g) + H2O(l) → H3O+(aq) + Cl–(aq) ΔG° = –35.9 kJ/mol
H3O+(aq) + OH–(aq) → ← 2 H2O(l) ΔG° = –80.0 kJ/mol
H3O+(aq) + OH–(aq) → ← 2 H2O(l) ΔG° = –80.0 kJ/mol
Pb2+(aq) + 2 Cl–(aq) → ← PbCl2(s) ΔG° = –27.4 kJ/mol
Summing the reactions means summing the individual ΔG° values, keeping track of reversed reactions, which changes the sign of ΔG°.
ΔG° = 85.1 – 35.9 –35.9 –80.0 –80.0 – 27.4 = –174.1 kJ/mol
6. Consider the reaction F2(g) + H2O(l) → OF2(g) + F–(aq)
a. Find the oxidation numbers in all of the atoms in the reactants and products.
F in F2
H in H2O
O in H2O
O in OF2
F in OF2
F in F–
b. Balance the reaction under acidic conditions.
c. Find the standard potential for the reaction.
d. Find ΔG° for the reaction.
e. Is the reaction spontaneous or nonspontaneous? Why?
a. Oxidation numbers
F in F2 : 0
H in H2O : +1
O in H2O : –2
O in OF2 : +2
F in OF2 : –1
F in F– : –1
b. Oxidation: H2O(l) + 2 F–(aq) → OF2(g) + 2 H+(aq) + 4 e–
Reduction: F2(g + 2 e– → 2 F–(aq)
Net: 2 F2(g) + H2O(l) → OF2(g) + 2 H+(aq) + 2 F–(aq)
c. E° = 2.86 + (–2.1) = 0.8 V
d. ΔG° = –nFE° = –(4)(96485)(0.8) = –300000 J/mol = –300 kJ/mol
e. Spontaneous because E° > 0 and ΔG° < 0.
7. Consider the cell:
Pt(s) | PbSO4(s) | PbO2(s) | SO42–(aq) | pH = 0 || PbO2(s) | Pb2+(aq) | pH = 0 | Pt(s)
a. Write the oxidation half-reaction.
b. Write the reduction half-reaction.
c. Write the net reaction.
d. Find the standard potential at 25 °C.
e. Find the equilibrium constant for the reaction.
f. What is the appropriate label (Ka, Kb, etc.) for the equilibrium constant?
a. PbSO4(s) + 2 H2O(l) → PbO2(s) + SO42–(aq) + 4 H+(aq) + 2 e–
b. PbO2(s) + 4 H+(aq) + 2 e– → Pb2+(aq) + 2 H2O(l)
c. PbSO4(s) → ← Pb2+(aq) + SO42–(aq)
d. E° = 1.453 + (–1.69) = –0.24 V
e. E° = (RT/nF)ln Keq
Keq = enFE°/RT = e(2)(96485)(–0.24)/(8.314)(298) = 7.6×10–9
f. Ksp - the net reaction is the solubilization of lead sulfate.