Exam 4B, Spring 2001

1. Complete and balance the following equations.

a. ammonia plus nitric acid

b. Cu2+(aq) + NH3(aq) {NH3 is in excess}

c. As2O3(s) + NO3(aq) → H3AsO4(aq) + NO(g)

d. Bi(OH)3(s) + Sn(OH)3(aq) → Bi(s) + Sn(OH)62–(aq)

Answer

a. NH3(aq) + HNO3(aq) → NH4+(aq) + NO3(aq)

b. Cu2+(aq) + 4 NH3(aq) [Cu(NH3)4]2+(aq)

c. As2O3(s) + NO3(aq) → H3AsO4(aq) + NO(g)

H3AsO4 indicates that the reaction is run in acid.

Oxidation: As2O3(s) + 5 H2O(l) → 2 H3AsO4(aq) + 4 H+(aq) + 4 e

Reduction: NO3(aq) + 4 H+(aq) + 3 e → NO(g) + 2 H2O(l)

Net: 3 As2O3(s) + 4 NO3(aq) + 7 H2O(l) + 4 H+(aq) → 6 H3AsO4(aq) + 4 NO(g)

d. Bi(OH)3(s) + Sn(OH)3(aq) → Bi(s) + Sn(OH)62–(aq)

The three hydroxide species indicate that the reaction is run in base.

Oxidation: Sn(OH)3(aq) + 3 H2O(l) → Sn(OH)62–(aq) + 3 H+(aq) + 2 e

Reduction: Bi(OH)3(s) + 3 H+(aq) + 3 e → Bi(s) + 3 H2O(l)

Net in acid: 2 Bi(OH)3(s) + 3 Sn(OH)3(aq) + 3 H2O(l) → 2 Bi(s) + 3 Sn(OH)62–(aq) + 3 H+(aq)

Neutralization: 3 H+(aq) + 3 OH(aq) → 3 H2O(l)

Net in base: 2 Bi(OH)3(s) + 3 Sn(OH)3(aq) + 3 OH(aq) → 2 Bi(s) + 3 Sn(OH)62–(aq)

2. Consider the reaction between solid calcium chloride and aqueous sodium sulfate.

a. Write the balanced reaction.

b. Find ΔH° for the reaction in units of kJ.

c. Find ΔS° for the reaction in units of J/K.

d. Find ΔG° for the reaction at 25 °C in units of kJ.

e. Find ΔG° for the reaction at 75 °C in units of kJ.

Answer

a. CaCl2(s) + Na2SO4(aq) → CaSO4(s) + 2 Na+(aq) + 2 Cl(aq)

b. ΔH° = [(–1434) + 2(–240.1) + 2(–167.2)] – [(–795.8) + (–1390)] = –63. kJ/mol

c. ΔS° = [(106.7) + 2(59.0) + 2(56.5)] – [(105) + (138.1)] = 95. J/mol·K

d. 25 °C = 298 K, so ΔG° = –63. – (298)(0.095) = –91. kJ/mol.

d. 75 °C = 348 K, so ΔG° = –63. – (348)(0.095) = –96 kJ/mol.

3. Barium carbonate has a molar solubility of 5.7×10–5 M at 25 °C and 6.1×10–5 M at 85 °C. Find Ksp at each temperature and ΔH° and ΔS° for the solubilization reaction.

Answer

BaCO3(s) Ba2+(aq) + CO32–(aq)

Ksp = x2, where x is the molar solubility of barium carbonate.

At 25 °C Ksp = (5.7×10–5)2 = 3.2×10–9

At 85 °C Ksp = (6.1×10–5)2 = 3.7×10–9

Use the van t'Hoff equation to find ΔH° and ΔS°.

At 25 °C (= 298 K): ln(3.2×10–9) = –ΔH°/(8.314×298) + ΔS°/(8.314)

At 85 °C (= 358 K): ln(3.7×10–9) = –ΔH°/(8.314×358) + ΔS°/(8.314)

Solve two equations in two unknowns:

–19.560 = –4.036×10–4ΔH° + 0.1203ΔS°

–19.415 = –3.356×10–4ΔH° + 0.1203ΔS°

Subtracting the two equations gives:

–0.145 = –0.680×10–4ΔH° so that ΔH° = 2130 J/mol = 2.13 kJ/mol

Then, ΔS° = (–19.560 + 4.036×10–4ΔH°)/0.1203 = (–19.560 + 4.036×10–4×(2130))/0.1203 = –155 J/mol·K

4. Consider the cell: Na(s) | Na+(aq) || Co2+(aq) | Co(s)

a. What is the balanced oxidation half-reaction?

b. What is the balanced reduction half-reaction?

c. What is the balanced net reaction?

d. What is the standard potential for the cell?

e. Is the reaction spontaneous or nonspontaneous? Why?

Answer

a. Na(s) → Na+(aq) + e

b. Co2+(aq) + 2 e → Co(s)

c. 2 Na(s) + Co2+(aq) → 2 Na+(aq) + Co(s)

d. E° = E°ox + E°red = 2.713 + –0.277 = +2.436 V

e. Spontaneous because E° > 0.