1. Complete and balance the following equations. Give the oxidation numbers for all of the atoms in both products and reactants except for hydrogen and oxygen. Predict the sign of ΔS° for each reaction.
a. H3PO4(aq) + N2H4(aq) → PH3(g) + N2(g)
b. Mn(s) + MnO4–(aq) → MnO2(s) + Mn(OH)2(s)
a. H3PO4(aq) + N2H4(aq) → PH3(g) + N2(g)
Oxidation: N2H4(aq) → N2(g) + 4 H+(aq) + 4 e–
Reduction: H3PO4(aq) + 8 H+(aq) + 8 e– → PH3(g) + 4 H2O(l)
Net: H3PO4(aq) + 2 N2H4(aq) → PH3(g) + 2 N2(g) + 4 H2O(l)
Oxidation Numbers: H3PO4, P is +5; PH3, P is –3; N2H4, N is –2; N2, N is 0.
ΔS° is > 0 because there are more moles of gas phase products.
b. Mn(s) + MnO4–(aq) → MnO2(s) + Mn(OH)2(s)
Mn(OH)2 indicates that the reaction is run in base.
Oxidation: Mn(s) + 2 H2O(l) → MnO2(s) + 4 H+(aq) + 4 e–
Reduction: MnO4–(aq) + 6 H+(aq) + 5 e– → Mn(OH)2(s) + 2 H2O(l)
Net in acid: 5 Mn(s) + 4 MnO4–(aq) + 2 H2O(l) + 4 H+(aq) → 5 MnO2(s) + 4 Mn(OH)2(s)
Neutralization: 4 H2O(l) → 4 H+(aq) + 4 OH–(aq)
Net in base: 5 Mn(s) + 4 MnO4–(aq) + 6 H2O(l) → 5 MnO2(s) + 4 Mn(OH)2(s) + 4 OH–(aq)
OR
Oxidation: Mn(s) + 2 H2O(l) → Mn(OH)2(s) + 2 H+(aq) + 2 e–
Reduction: MnO4–(aq) + 4 H+(aq) + 3 e– → MnO2(s) + 2 H2O(l)
Net in acid: 3 Mn(s) + 2 MnO4–(aq) + 2 H2O(l) + 2 H+(aq) → 3 MnO2(s) + 2 Mn(OH)2(s)
Neutralization: 2 H2O(l) → 2 H+(aq) + 2 OH–(aq)
Net in base: 3 Mn(s) + 2 MnO4–(aq) + 4 H2O(l) → 3 MnO2(s) + 2 Mn(OH)2(s) + 2 OH–(aq)
Either way, the oxidation numbers are: Mn, Mn is 0; MnO4–, Mn is +7; MnO2, Mn is +4; Mn(OH)2, Mn is +2.
Either way, ΔS° < 0 because the Mn products are solids.
2. Consider the reaction between solid magnesium chloride and aqueous carbonic acid.
a. Write the balanced reaction.
b. Find ΔH° for the reaction in units of kJ.
c. Find ΔS° for the reaction in units of J/K.
d. Find ΔG° for the reaction at 25 °C in units of kJ.
e. Find ΔG° for the reaction at 75 °C in units of kJ.
a. MgCl2(s) + H2CO3(aq) + 2 H2O(l) → MgCO3(s) + 2 H3O+(aq) + 2 Cl–(aq)
b. ΔH° = [(–1096) + 2(–285.8) + 2(–167.2)] – [(–641.3) + (–698.7) + 2(–285.8)] = –90. kJ/mol
c. ΔS° = [(65.7) + 2(69.91) + 2(56.5)] – [(89.62) + (191) + 2(69.91)] = –102. J/mol·K
d. 25 °C = 298 K, so ΔG° = –90. – (298)(–0.102) = –60. kJ/mol.
e. 75 °C = 348 K, so ΔG° = –90. – (348)(–0.102) = –55 kJ/mol.
3. Estimate Ka1 for carbonic acid using thermochemical data.
H2CO3(aq) + H2O(l) → ← H3O+(aq) + HCO3–(aq)
ΔH° = [(–285.8) + (–691.11)] – [(–698.7) + (–285.8)] = 7.6 kJ/mol
ΔS° = [(69.91) + (95.0)] – [(191) + (69.91)] = –96 J/mol·K
ΔG° (at 25 °C) = 7.6 – (298)(–0.096) = 36.2 kJ/mol = 36200 J/mol
ΔG° = –RTln Ka1, so Ka1 = e(–ΔG°/RT) = e–36200/(8.314×298) = 4.5×10–7
This compares to Ka1 = 4.4×10–7 from the Table of Acid Ionization Constants
4. Estimate the cell potential at standard condition and 25 °C for the cell
Pt(s) | H3AsO3(aq) | H2AsO4–(aq) | H+(aq) || H3AsO4(aq) | H3AsO3(aq) | H+(aq) | Pt(s)
Oxidation: H3AsO3(aq) + H2O(l) → H2AsO4–(aq) + 3 H+(aq) + 2 e–
Reduction: H3AsO4(aq) + 2 H+(aq) + 2 e– → H3AsO3(aq) + H2O(l)
Net: H3AsO4(aq) → H+(aq) + H2AsO4–(aq)
This is the first acid ionization of H3AsO4, for which Ka1 = 6.0×10–3
Thus, E° = (RT/nF)ln Ka1 = (8.314×298/2×96485)ln(6.0×10–3) = –0.066 V
5. Consider the cell: Au(s) | Au3+(aq) || Fe2+(aq) | Fe(s)
a. What is the balanced oxidation half-reaction?
b. What is the balanced reduction half-reaction?
c. What is the balanced net reaction?
d. What is the standard potential for the cell?
e. Is the reaction spontaneous or nonspontaneous? Why?
a. Au(s) → Au3+(aq) + 3 e–
b. Fe2+(aq) + 2 e– → Fe(s)
c. 2 Au(s) + 3 Fe2+(aq) → 2 Au3+(aq) + 3 Fe(s)
d. E° = E°ox + E°red = –1.52 + –0.440 = –1.96 V
e. Nonspontaneous because E° < 0.