1. Predict the sign of ΔS° for the following reactions.
a. Na(s) → Na(g)
b. Cl2(g) + 2 H2O(l) → Cl–(aq) + HClO(aq) + H3O+(aq)
c. CO2(g) + 3 H2O(l) + Ca(NO3)2(aq) → CaCO3(s) + 2 H3O+(aq) + 2 NO3–(aq)
a. Na(s) → Na(g)
ΔS° > 0 : gas phase product
b. Cl2(g) + 2 H2O(l) → Cl–(aq) + HClO(aq) + H3O+(aq)
ΔS° <. 0 : gas phase reactant with no gas phase products
c. CO2(g) + 3 H2O(l) + Ca(NO3)2(aq) → CaCO3(s) + 2 H3O+(aq) + 2 NO3–(aq)
ΔS° < 0 : gas phase reactant with no gas phase products
2. Complete and balance the following reactions:
a. HCO3–(aq) + KOH(aq)
b. AgNO3(aq) + NaCl(aq)
c. CrO42–(aq) + Cu(s) → Cr3+(aq) + Cu2+(aq) pH = 1
d. Mn2+(aq) + H2O2(aq) → MnO2(s) + H2O(l) pH = 14
a. HCO3–(aq) + KOH(aq)
HCO3–(aq) + KOH(aq) → H2O(l) + K+(aq) + CO32–(aq)
b. AgNO3(aq) + NaCl(aq)
AgNO3(aq) + NaCl(aq) → AgCl(s) + Na+(aq) + NO3–(aq)
c. CrO42–(aq) + Cu(s) → Cr3+(aq) + Cu2+(aq) pH = 1
Oxidation: Cu(s) → Cu2+(aq) + 2 e–
Reduction: CrO42–(aq) + 8 H+(aq) + 3 e– → Cr3+(aq) + 4 H2O(l)
Net: 2 CrO42–(aq) + 3 Cu(s) + 16 H+(aq) → 2 Cr3+(aq) + 3 Cu2+(aq) + 8 H2O(l)
d. Mn2+(aq) + H2O2(aq) → MnO2(s) + H2O(l) pH = 14
Oxidation: Mn2+(aq) + 2 H2O(l) → MnO2(s) + 4 H+(aq) + 2 e–
Reduction: H2O2(aq) + 2 H+(aq) + 2 e– → 2 H2O(l)
Net in acid: Mn2+(aq) + H2O2(aq) → MnO2(s) + 2 H+(aq)
Neutralization: 2 H+(aq) + 2 OH–(aq) → 2 H2O(l)
Net in base: Mn2+(aq) + H2O2(aq) + 2 OH–(aq) → MnO2(s) + 2 H2O(l)
3. Consider the formation of the complex ion Ag(NH3)2+(aq).
a. Find ΔG° for the reaction at 25 °C.
b. The following cell is constructed: Ag(s)|Ag+(aq)|| Ag(NH3)2+(aq)|NH3(aq)|Ag(s); what is E° for the cell?
a. Ag+(aq) + 2 NH3(aq) → ← [Ag(NH3)2]+(aq) Kf = 1.6×107
ΔG° = –RTln Kf = –(8.314)(298)ln(1.6×107) = –(8.314)(298)(16.59)= –41100 J/mol = –41.1 kJ/mol
b. Oxidation: Ag(s) → Ag+(aq) + e–
Reduction: Ag(NH3)2+(aq) + e– → 2 NH3(aq) + Ag(s)
Net: [Ag(NH3)2]+(aq) → ← Ag+(aq) + 2 NH3(aq)
This is the reverse of the complex ion formation reaction, so ΔG° = +41100 J/mol
E° = –ΔG°/nF = –(41100)/(1)(96485) = –0.426 V
4. Consider the reaction: MgO(s) + HCl(aq) → H2O(l) + Mg2+(aq) + Cl–(aq).
a. Find ΔH° for the reaction.
b. Find ΔS° for the reaction.
c. Find ΔG° for the reaction at 25 °C.
d. Is the reaction spontaneous?
Balance the reaction: MgO(s) + 2 HCl(aq) → H2O(l) + Mg2+(aq) + 2 Cl–(aq)
a. ΔH° = [(–285.8) + (–466.9) + 2(–167.2)] – [(–601.7) + 2(–167.2)] = –151.0 kJ/mol
b. ΔS° = [(69.91) + (–138.1) + 2(56.5)] – [(26.94) + 2(56.48)] = –95.1 J/mol·K
c. ΔG° = –151.0 –(298)(–0.0951) = –122.7 kJ/mol
d. Is the reaction spontaneous? Yes, ΔG° < 0
5. The following cell was constructed: Sn(s)|Sn2+(aq)|| I2(s)|I–(aq)|Pt.
a. Write the balanced reaction for the cell.
b. Find E° for the cell.
c. Find the thermodynamic equilibrium constant for the cell at 25 °C.
d. The concentration of ions in the anode half-cell are 0.10 M and the concentration of ions in the cathode half-cell are 0.050 M; find the cell potential at 25 °C.
a. Write the balanced reaction for the cell.
Oxidation: Sn(s) → Sn2+(aq) + 2 e– E°ox = +0.137 V
Reduction: I2(s) + 2 e– → 2 I–(aq) E°red = +0.535 V
Net: Sn(s) + I2(s) → Sn2+(aq) + 2 I–(aq)
b. E° = +0.137 + 0.535 = +0.672 V
c. E° = (RT)/(nF)ln Kc, so ln Kc = nFE°/RT = (2)(96485)(0.672)/(8.314)(298) = 52.3
Kc = e52.3 = 5×1022
d. The concentration of ions in the anode half-cell are 0.10 M and the concentration of ions in the cathode half-cell are 0.050 M; find the cell potential at 25 °C.
E = E° – (RT/nF)ln Q, where Q = [Sn2+][I–]2
Q = [0.10][0.050]2 = 2.5×10–4
E = 0.672 – (8.314·298/2·96485)ln(2.5×10–4) = 0.672 – (0.0128)(–8.29) = 0.778 V