Exam 3B, Spring 2001

1. Complete and balance the following reactions:

(a) C5H5N(aq) + H2O(l)

(b) C5H5N(aq) + HCl(aq)

(c) Co2+(aq) + H2O(l)

(d) Ca(OH)2(aq) + HF(aq)

(e) H3PO4(aq) + CaI2(aq)

(f) NO2(aq) + H2O(l)

(g) C6H5NH2(aq) + HOCl(aq)

Answer

(a) C5H5N(aq) + H2O(l) C5H5NH+(aq) + OH(aq)

(b) C5H5N(aq) + HCl(aq) → C5H5NH+(aq) + Cl(aq)

(c) Co2+(aq) + 2 H2O(l) CoOH+(aq) + H3O+(aq)

(d) Ca(OH)2(aq) + 2 HF(aq) → CaF2(s) + 2 H2O(l)

(e) 2 H3PO4(aq) + 3 CaI2(aq) + 6 H2O(l) → Ca3(PO4)2(s) + 6 H3O+(aq) + 6 I(aq)

(f) NO2(aq) + H2O(l) HNO2(aq) + OH(aq)

(g) C6H5NH2(aq) + HOCl(aq) C6H5NH3+(aq) + OCl(aq) (Kc = 2.9×10–8/1.4×10–5 = 2.1×10–3 < 100)

2. What is the pH of a 0.0052 M solution of methylamine, CH3NH2, at 25 °C?

Answer

CH3NH2(aq) +H2O(l) CH3NH3+(aq) +OH(aq)

Kb = [CH3NH3+]e[OH]e /[CH3NH2]e = 1.0×10–14/2.4×10–11 = 4.2×10–4

 

 

Initial0.005200

Change–x+x+x

Equilibrium0.0052 – xx x

Approximate? 0.0052/4.2×10–4 = 12 < 100 No

4.2×10–4 = x2/(0.0052 – x)

x2 + 4.2×10–4x – 2.18×10–6 = 0

x = 1.3×10–3 or –1.7×10–3

x = [OH]e = 1.3×10–3

pOH = –log([OH]) = –log(1.3×10–3) = 2.89

pH = 14.00 – pOH = 14.00 – 2.89 = 11.11

3. Indicate whether the following salts are acidic, basic, or neutral.

(a) NaNO3

(b) Ca(C2H3O2)2

(c) KHSO4

(d) Co(OH)2

(e) CsNO2

Answer

(a) NaNO3(aq) → Na+(aq) + NO3(aq)

Na+(aq) + 2 H2O(l) → NR

NO3(aq) + H2O(l) → NR

Neutral

(b) Ca(C2H3O2)2(aq) → Ca2+(aq) + 2 C2H3O2(aq)

Ca2+(aq) + 2 H2O(l) → NR

C2H3O2(aq) + H2O(l) HC2H3O2(aq) + OH(aq)

Basic

(c) KHSO4(aq) → K+(aq) + HSO4(aq)

K+(aq) + 2 H2O(l) → NR

HSO4(aq) + H2O(l) H3O+(aq) + SO42–(aq)

Acidic

(d) Co(OH)2(s) Co2+(aq) + 2 OH(aq)

Basic

(e) CsNO2(aq) → Cs+(aq) + NO2(aq)

Cs+(aq) + 2 H2O(l) → NR

NO2(aq) + H2O(l) HNO2(aq) + OH(aq)

Basic

4. A buffer is prepared that is 0.40 M boric acid, H3BO3, and 0.50 M sodium dihydrogen borate.

(a) What is the pH of the buffer at 25 °C?

(b) 0.05 moles of perchloric acid is added to 1.0 L of the buffer prepared in part (a). What is the new pH?

Answer

(a) What is the pH of the buffer at 25 °C?

NaH2BO3(aq) → Na+(aq) + H2BO3(aq)


H3BO3(aq) +H2O(l) H3O+(aq) + H2BO3(aq)

Ka = [H3O+]e[H2BO3]e /[H3BO3]e = 5.9×10–10

 

 

Initial0.4000.50

Change–x+x+x

Equilibrium0.40 – x0.50 + x x

Approximate? 0.40/5.9×10–10 = 7×108 > 100 Yes

5.9×10–10 = x(0.50)/(0.40)

x = [H3O+]e = 4.7×10–10

pH = –log([H3O+]) = –log(4.7×10–10) = 9.33

(b) 0.05 moles of perchloric acid is added to 1.0 L of the buffer prepared in part (a). What is the new pH?

[HClO4] = 0.05 mol/1.0 L = 0.05 M

NaH2BO3(aq) → Na+(aq) + H2BO3(aq)


H3BO3(aq) +H2O(l) H3O+(aq) + H2BO3(aq)

A/BH3BO3(aq) +ClO4(aq) HClO4(aq) + H2BO3(aq)

Ka = [H3O+]e[H2BO3]e /[H3BO3]e = 5.9×10–10

 

 

Initial0.4000.50

A/B+0.050–0.05

Change–x+x+x

Equilibrium0.45 – x0.45 + x x

Approximate? 0.45/5.9×10–10 = 8×108 > 100 Yes

5.9×10–10 = x(0.45)/(0.45)

x = [H3O+]e = 5.9×10–10

pH = –log([H3O+]) = –log(5.9×10–10) = 9.23

5. Which is more soluble at 25 °C, magnesium fluoride or lithium phosphate?

Answer

Magnesium fluoride, MgF2

MgF2(s) Mg2+(aq) +2 F(aq)

Ksp = [Mg2+]e[F]e2 = 3.7×10–8


Initial00

Change+x+2x

Equilibriumx2x

3.7×10–8 = (x)(2x)2 = 4x3

x = molar solubility = 2.1×10–3 M

Lithium phosphate, Li3PO4

Li3PO4(s) 3 Li+(aq) +PO43–(aq)

Ksp = [Li+]e3[PO4]e = 3.2×10–9


Initial00

Change+3x+x

Equilibrium3xx

3.2×10–9 = (3x)3(x) = 27x4

x = molar solubility = 3.3×10–3 M

Lithium phosphate is slightly more soluble than magnesium fluoride.