Exam 3A, Spring 2002

1. Complete and balance the following reactions.

a. aqueous sulfuric acid plus solid barium hydroxide

b. C6H5NH2(aq) + H2O(l)

c. C6H5NH2(aq) + HBr(aq)

d. Mg(ClO4)2(aq) + NaOH(aq)

e. NaF(aq) + Sc(NO3)3(aq)

f. H2PO4(aq) + HAsO42–(aq)

g. Mn2+(aq) + H2O(l)

Answer

a. H2SO4(aq) + Ba(OH)2(s) → BaSO4(s) + 2 H2O(l)

b. C6H5NH2(aq) + H2O(l) C6H5NH3+(aq) + OH(aq)

c. C6H5NH2(aq) + HBr(aq) → C6H5NH3+(aq) + Br(aq)

d. Mg(ClO4)2(aq) + 2 NaOH(aq) → Mg(OH)2(s) + 2 Na+(aq) + 2 ClO4(aq)

e. 3 NaF(aq) + Sc(NO3)3(aq) → ScF3(s) + 3 Na+(aq) + 3 NO3(aq)

f. H2PO4(aq) + HAsO42–(aq) HPO42–(aq) + H2AsO4(aq) (Kc = 6.3×10–8/1.0×10–7 = 63 < 100). If dihydrogenphosphate is the base, then Kc ~ 10–9, which is much smaller.)

g. Mn2+(aq) + 2 H2O(l) MnOH+(aq) + H3O+(aq)

2. Find the pH of a 0.0010 M solution of Na2Se. Write all of the appropriate chemical reactions. Ka for HSe = 1.0×10–11

Answer

Na2Se(aq) 2 Na+(aq)+ Se2–(aq)

Se2–(aq) +H2O(l) HSe(aq) +OH(aq)

Kb = [HSe]e[OH]e /[Se2–]e = 1.0×10–14/1.0×10–11 = 1.0×10–3

 

 

Initial0.001000

Change–x+x+x

Equilibrium0.0010 – xx x

Approximate? 0.0010/1.0×10–3 = 1 < 100 No

1.0×10–3 = x2/(0.0010 – x)

x2 + 1.0×10–3x – 1.0×10–6 = 0

x = 6.2×10–4 or –1.6×10–3

x = [OH]e = 6.2×10–4

pOH = –log([OH]) = –log(6.2×10–4) = 3.31

pH = 14.00 – pOH = 14.00 – 3.21 = 10.79

3. A buffer is prepared to be 0.10 M NaH2PO4 and 0.10 M Na2HPO4.

a. Find the pH of the buffer at 25 °C. Write all of the appropriate chemical reactions.

b. 0.025 moles of HCl(g) is added to 1.0 L of the buffer. Write any new chemical reactions that occur and find the new pH in the buffer solution.

Answer

a. Find the pH of the buffer at 25 °C. Write all of the appropriate chemical reactions.

NaH2PO4(aq) Na+(aq)+ H2PO4(aq)

Na2HPO4(aq) 2 Na+(aq)+ HPO42–(aq)

H2PO4(aq) +H2O(l) H3O+(aq) +HPO42–(aq)

Ka = [H3O+]e[HPO42–]e /[H2PO4]e = 6.3×10–8

 

 

Initial0.1000.10

Change–x+x+x

Equilibrium0.10 – xx 0.10 + x

Approximate? 0.10/6.3×10–8 = 2×106 > 100 Yes

6.3×10–8 = x(0.10)/(0.10)

x = [H3O+]e = 6.3×10–8

pH = –log([H3O+]) = –log(6.3×10–8) = 7.20

b. 0.025 moles of HCl(g) is added to 1.0 L of the buffer. Write any new chemical reactions that occur and find the new pH in the buffer solution.

NaH2PO4(aq) Na+(aq)+ H2PO4(aq)

Na2HPO4(aq) 2 Na+(aq)+ HPO42–(aq)

H2PO4(aq) +H2O(l) H3O+(aq) +HPO42–(aq)

A/BH2PO4(aq) +Cl(aq) HCl(g) +HPO42–(aq)

Ka = [H3O+]e[HPO42–]e /[H2PO4]e = 6.3×10–8

 

 

Initial0.1000.10

A/B+0.0250–0.025

Change–x+x+x

Equilibrium0.125 – xx 0.075 + x

Approximate? 0.075/6.3×10–8 = 1×106 > 100 Yes

6.3×10–8 = x(0.075)/(0.125)

x = [H3O+]e = 1.1×10–7

pH = –log([H3O+]) = –log(1.1×10–7) = 6.96

4. Consider the solubility of lead carbonate.

a. Find the molar solubility in water. Write the appropriate chemical reactions.

b. Find the molar solubility of lead carbonate in a 0.10 M solution of lead nitrate. Write the appropriate chemical reactions.

Answer

a. Find the molar solubility in water. Write the appropriate chemical reactions.

PbCO3(s) Pb2+(aq) +CO32–(aq)

Ksp = [Pb2+]e[CO32–]e = 7.4×10–14


Initial00

Change+x+x

Equilibriumxx

7.4×10–14 = (x)(x) = x2

x = molar solubility = 2.7×10–7 M

b. Find the molar solubility of lead carbonate in a 0.10 M solution of lead nitrate. Write the appropriate chemical reactions.

Pb(NO3)2(aq) Pb2+(aq) +2 NO3(aq)

PbCO3(s) Pb2+(aq) +CO32–(aq)

Ksp = [Pb2+]e[CO32–]e = 7.4×10–14


Initial0.100

Change+x+x

Equilibrium0.10 + xx

7.4×10–14 = (0.10)(x) = 0.10x (x << 0.10)

x = molar solubility = 7.4×10–13 M