1. What is the difference between an oxidation-reduction reaction and a half-reaction?
Oxidation-reductions reactions always have an electron transfer from the oxidized species to the reduced species. When the oxidized species is separated from the reduced species, a balanced reaction can be written for each process (oxidation or reduction) that is called a half-reaction. All half-reactions must have electrons either as reactants (for reduction half-reactions) or products (for oxidation half-reactions).
2. What is the function of the salt bridge in an electrochemical cell?
The salt bridge completes the electrical circuit between the anode and cathode half–;cells. An effective salt bridge conducts current using ions (from an ionic salt) and not electrons.
3. What is the criterion for spontaneous chemical change based on cell potentials? Explain.
Spontaneous reactions occur when the Gibb's Free Energy is negative. Cell potentials are proportional to the Gibb's Free Energy but with a sign change. Thus, a positive cell potential indicates a spontaneous chemical change.
4. Complete and balance the following half–equations, and indicate whether oxidation or reduction is involved.
(a) ClO2(g) → ClO3–(aq) (acidic solution)
(b) MnO4–(aq) → MnO2(s) (acidic solution)
(c) SbH3(g) → Sb(s) (basic solution)
(a) ClO2(g) + H2O(l) → ClO3–(aq) + 2 H+(aq) + e– Oxidation
(b) MnO4–(aq) + 4 H+(aq) + 3 e– → MnO2(s) + 2 H2O(l) Reduction
(c) SbH3(g) + 3 OH–(aq) → Sb(s) + 3 H2O(l) + 3 e– Oxidation
5. Balance the following redox equations in acidic solution.
(a) Fe2+(aq) + Cr2O72–(aq) → Fe3+(aq) + Cr3+(aq)
(b) S8(s) + O2(g) → SO42–(aq)
(c) Fe3+(aq) + NH2OH2+(aq) → Fe2+(aq) + N2O(g)
(a) Fe2+(aq) + Cr2O72–(aq) → Fe3+(aq) + Cr3+(aq)
Oxidation: Fe2+(aq) → Fe3+(aq) + e–
Reduction: Cr2O72–(aq) + 14 H+(aq) + 6 e– → 2 Cr3+(aq) + 7 H2O(l)
Net: 6 Fe2+(aq) + Cr2O72–(aq) + 14 H+(aq) → 6 Fe3+(aq) + 2 Cr3+(aq) + 7 H2O(l)
(b) S8(s) + O2(g) → SO42–(aq)
Oxidation: S8(s) + 32 H2O(l) → 8 SO42–(aq) + 64 H+(aq) + 48 e–
Reduction: O2(g) + 4 H+(aq) + 4 e– → 2 H2O(l)
Net: S8(s) + 12 O2(g) + 8 H2O(l) → 8 SO42–(aq) + 16 H+(aq)
(c) Fe3+(aq) + NH2OH2+(aq) → Fe2+(aq) + N2O(g)
Oxidation: 2 NH2OH2+(aq) → N2O(g) + H2O(l) + 6 H+(aq) + 4 e–
Reduction: Fe3+(aq) + e– → Fe2+(aq)
Net: 4 Fe3+(aq) + 2 NH2OH2+(aq) → 4 Fe2+(aq) + N2O(g) + H2O(l) + 6 H+(aq)
6. Balance the following equations in acidic solution.
(a) Ag(s) + NO3–(aq) → Ag+(aq) + NO(g)
(b) H2O2(aq) + MnO4–(aq) → Mn2+(aq) + O2(g)
(c) Cl2(g) + I–(aq) → Cl–(aq) + IO3–(aq)
(a) Ag(s) + NO3–(aq) → Ag+(aq) + NO(g)
Oxidation: Ag(s) → Ag+(aq) + e–
Reduction: NO3–(aq) + 4 H+(aq) + 3 e– → NO(g) + 2 H2O(l)
Net: 3 Ag(s) + NO3–(aq) + 4 H+(aq) → 3 Ag+(aq) + NO(g) + 2 H2O(l)
(b) H2O2(aq) + MnO4–(aq) → Mn2+(aq) + O2(g)
Oxidation: H2O2(aq) → O2(g) + 2 H+(aq) + 2 e–
Reduction: MnO4–(aq) + 8 H+(aq) + 5 e– → Mn2+(aq) + 4 H2O(l)
Net: 5 H2O2(aq) + 2 MnO4–(aq) + 6 H+(aq) → 2 Mn2+(aq) + 5 O2(g) + 8 H2O(l)
(c) Cl2(g) + I–(aq) → Cl–(aq) + IO3–(aq)
Oxidation: I–(aq) + 3 H2O(l) → IO3–(aq) + 6 H+(aq) + 6 e–
Reduction: Cl2(g) + 2 e– → 2 Cl–(aq)
Net: 3 Cl2(g) + I–(aq) + 3 H2O(l) → 6 Cl–(aq) + IO3–(aq) + 6 H+(aq)
7. Balance the following equations in basic solution.
(a) Fe(OH)2(s) + O2(g) → Fe(OH)3(s)
(b) S8(s) → S2O32–(aq) + S2–(aq)
(c) CrI3(s) + H2O2(aq) → CrO42–(aq) + IO4–(aq)
(a) Fe(OH)2(s) + O2(g) → Fe(OH)3(s)
Oxidation: Fe(OH)2(s) + H2O(l) → Fe(OH)3(s) + H+(aq) + e–
Reduction: O2(g) + 4 H+(aq) + 4 e– → 2 H2O(l)
Net in acid: 4 Fe(OH)2(s) + O2(g) + 2 H2O(l) → 4 Fe(OH)3(s)
Neutralization: None
Net in base: 4 Fe(OH)2(s) + O2(g) + 2 H2O(l) → 4 Fe(OH)3(s)
(b) S8(s) → S2O32–(aq) + S2–(aq)
Oxidation: S8(s) + 12 H2O(l) → 4 S2O32–(aq) + 24 H+(aq) + 16 e–
Reduction: S8(s) + 16 e– → 8 S2–(aq)
Net in acid: 2 S8(s) + 12 H2O(l) → 4 S2O32–(aq) + 8 S2–(aq) + 24 H+(aq)
Neutralization: 24 H+(aq) + 24 OH–(aq) → 24 H2O(l)
Net in base: 2 S8(s) + 24 OH–(aq) → 4 S2O32–(aq) + 8 S2–(aq) + 12 H2O(l)
(c) CrI3(s) + H2O2(aq) → CrO42–(aq) + IO4–(aq)
Oxidation: CrI3(s) + 16 H2O(l) → CrO42–(aq) + 3 IO4–(aq) + 32 H+(aq) + 27 e–
Reduction: H2O2(aq) + 2 H+(aq) + 2 e– → 2 H2O(l)
Net in acid: 2 CrI3(s) + 27 H2O2(aq) → 2 CrO42–(aq) + 6 IO4–(aq) + 10 H+(aq) + 22 H2O(l)
Neutralization: 10 H+(aq) + 10 OH–(aq) → 10 H2O(l)
Net in base: 2 CrI3(s) + 27 H2O2(aq) + 10 OH–(aq) → 2 CrO42–(aq) + 6 IO4–(aq) + 32 H2O(l)
8. Balance the following equations in basic solution.
(a) CrO42–(aq) + AsH3(g) → Cr(OH)3(s) + As(s)
(b) CH3OH(aq) + MnO4–(aq) → HCOO–(aq) + MnO2(s)
(c) [Fe(CN)6]3–(aq) + N2H4(aq) → [Fe(CN)6]4–(aq) + N2(g)
(a) CrO42–(aq) + AsH3(g) → Cr(OH)3(s) + As(s)
Oxidation: AsH3(g) → As(s) + 3 H+(aq) + 3 e–
Reduction: CrO42–(aq) + 5 H+(aq) + 3 e– → Cr(OH)3(s) + H2O(l)
Net in acid: CrO42–(aq) + AsH3(g) + 2 H+(aq) → Cr(OH)3(s) + As(s) + H2O(l)
Neutralization: 2 H2O(l) → 2 H+(aq) + 2 OH–(aq)
Net in base: CrO42–(aq) + AsH3(g) + H2O(l) → Cr(OH)3(s) + As(s) + 2 OH–(aq)
(b) CH3OH(aq) + MnO4–(aq) → HCOO–(aq) + MnO2(s)
Oxidation: CH3OH(aq) + H2O(l) → HCOO–(aq) + 5 H+(aq) + 4 e–
Reduction: MnO4–(aq) + 4 H+(aq) + 3 e– → MnO2(s) + 2 H2O(l)
Net in acid: 3 CH3OH(aq) + 4 MnO4–(aq) + H+(aq) → 3 HCOO–(aq) + 4 MnO2(s) + 5 H2O(l)
Neutralization: H2O(l) → H+(aq) + OH–(aq)
Net in base: 3 CH3OH(aq) + 4 MnO4–(aq) → 3 HCOO–(aq) + 4 MnO2(s) + 4 H2O(l) + OH–(aq)
(c) [Fe(CN)6]3–(aq) + N2H4(aq) → [Fe(CN)6]4–(aq) + N2(g)
Oxidation: N2H4(aq) → N2(g) + 4 H+(aq) + 4 e–
Reduction: [Fe(CN)6]3–(aq) + e– → [Fe(CN)6]4–(aq)
Net in acid: 4 [Fe(CN)6]3–(aq) + N2H4(aq) → 4 [Fe(CN)6]4–(aq) + N2(g) + 4 H+(aq)
Neutralization: 4 H+(aq) + 4 OH–(aq) → 4 H2O(l)
Net in base: 4 [Fe(CN)6]3–(aq) + N2H4(aq) + 4 OH–(aq) → 4 [Fe(CN)6]4–(aq) + N2(g) + 4 H2O(l)
9. Write balanced equations for
(a) the reaction of oxalic acid (HOOCCOOH) and permanganate ion in acid solution to produce manganese(II) ion and carbon dioxide gas
(b) the reaction of Cr2O72– and UO2+ to produce UO22+ and Cr3+ in an acidic aqueous environment
(c) the reaction in basic solution of nitrate ion and zinc to produce zinc(II) ion and gaseous ammonia.
(a) the reaction of oxalic acid (HOOCCOOH) and permanganate ion in acid solution to produce manganese(II) ion and carbon dioxide gas
Oxidation: HOOCCOOH(aq) → 2 CO2(g) + 2 H+(aq) + 2 e–
Reduction: MnO4–(aq) + 8 H+(aq) + 5 e– → Mn2+(aq) + 4 H2O(l)
Net: 5 HOOCCOOH(aq) + 2 MnO4–(aq) + 6 H+(aq) → 10 CO2(g) + 2 Mn2+(aq) + 8 H2O(l)
(b) the reaction of Cr2O72– and UO2+ to produce UO22+ and Cr3+ in an acidic aqueous environment
Oxidation: UO2+(aq) + H2O(l) → UO22+(aq) + 2 H+(aq) + 2 e–
Reduction: Cr2O72–(aq) + 14 H+(aq) + 6 e– → 2 Cr3+(aq) + 7 H2O(l)
Net: Cr2O72–(aq) + 3 UO2+(aq) + 8 H+(aq) → 2 Cr3+(aq) + 3 UO22+(aq) + 4 H2O(l)
(c) the reaction in basic solution of nitrate ion and zinc to produce zinc(II) ion and gaseous ammonia.
Oxidation: Zn(s) → Zn2+(aq) + 2 e–
Reduction: NO3–(aq) + 9 H+(aq) + 8 e– → NH3(aq) + 3 H2O(l)
Net in acid: 4 Zn(s) + NO3–(aq) + 9 H+(aq) → 4 Zn2+(aq) + NH3(aq) + 3 H2O(l)
Neutralization: 9 H2O(l) → 9 H+(aq) + 9 OH–(aq)
Net in base: 4 Zn(s) + NO3–(aq) + 6 H2O(l) → 4 Zn2+(aq) + NH3(aq) + 9 OH–(aq)
10. For the reaction
2 CuI(s) + Cd(s) → Cd2+(aq) + 2 I–(aq) + 2 Cu(s) E°cell = +0.23 V
given that E°Cd2+/Cd = –0.403 V, determine E° for the half–reaction
2 CuI(s) + 2 e– → 2 Cu(s) + 2 I–(aq)
The two half–reactions for the cell are:
2 CuI(s) + 2 e– → 2 Cu(s) + 2 I–(aq) E°reduction = ?
Cd(s) → Cd2+(aq) + 2 e– E°oxidation = –E°reduction = –(–0.403) = +0.403 V
For the net cell, E°cell = E°reduction + E°oxidation = +0.23 V
Substituting, +0.23 = E°reduction + 0.403
E°reduction = –0.17 V
11. E°cell = 1.47 V for the voltaic cell
V(s) | V2+(1 M) || Cu2+(1 M) | Cu(s)
Determine the value of E°V2+//V.
The cell is set up at standard conditions so the question can be answered using standard potentials.
The anode reaction is:
V(s) → V2+(aq) + 2 e–
with E°oxidation = – E°anode being the unknown potential.
The cathode reaction is:
Cu2+(aq) + 2 e– → Cu(s)
with E°reduction = E°cathode = +0.340 V from the Table of Standard Reduction Potentials.
The net reaction is:
V(s) + Cu2+(aq) → V2+(aq) + Cu(s)
with a cell potential = E°cell = E°reduction + E°oxidation = E°cathode – E°anode
E°cell = +0.340 V – E°anode = +1.47 V
E°anode = E°V2+/V = 0.340 – 1.47 = –1.13 V
12. Write equations for the half–reactions and the overall cell reaction, and calculate E°cell for each of the voltaic cells diagrammed below.
(a) Pt | I2(s) | I–(aq) || Cl–(aq) | Cl2(g) | Pt
(b) Pt | PbO2(s) | Pb2+(aq), H+(aq) || S2O82–(aq),SO42–(aq) | Pt
Split each cell into it's half–;reactions, find the potential for the half–reaction from the Table of Standard Reduction Potentials, then use these to find the cell voltage.
(a) Pt | I2(s) | I–(aq) || Cl–(aq) | Cl2(g) | Pt
Anode (oxidation) reaction: 2 I–(aq) → I2(s) + 2 e–
E°oxidation = –E°reduction =–(0.535) = –0.535 V
Cathode (reduction) reaction: Cl2(g) + 2 e– → 2 Cl–(aq)
E°reduction = +1.358 V
Overall cell reaction: Cl2(g) + 2 I–(aq) → I2(s) + 2 Cl–(aq)
E°cell = E°oxidation + E°reduction = –0.535 + 1.358 = +0.823 V
(b) Pt | PbO2(s) | Pb2+(aq), H+(aq) || S2O82–(aq),SO42–(aq) | Pt
Anode (oxidation) reaction: Pb2+(aq) + 2 H2O(l) → PbO2(s) + 4 H+(aq) + 2 e–
E°oxidation = –E°reduction =–(1.455) = –1.455 V
Cathode (reduction) reaction: S2O82–(aq) + 2 e– → 2 SO42–(aq)
E°reduction = +2.01 V
Overall cell reaction: Pb2+(aq) + 2 H2O(l) + S2O82–(aq) → PbO2(s) + 4 H+(aq) + 2 SO42–(aq)
E°cell = E°oxidation + E°reduction = –1.455 + 2.01 = +0.56 V
13. Predict whether a spontaneous reaction will occur in the forward direction in each of the following. Assume that all reactants and products are in their standard states.
(a) Sn(s) + Co2+(aq) → Sn2+(aq) + Co(s)
(b) 6 Br–(aq) + Cr2O72–(aq) + 14 H+(aq) → 2 Cr3+(aq) + 7 H2O(l) + 3 Br2(l)
(a) Sn(s) + Co2+(aq) → Sn2+(aq) + Co(s)
Sn(s) → Sn2+(aq) + 2 e– E°oxidation = +0.137 V
Co2+(aq) + 2 e– → Co(s) E°reduction = –0.277 V
E°cell = +0.137 + –0.277 = –0.140 V < 0, therefore nonspontaneous.
(b) 6 Br–(aq) + Cr2O72–(aq) + 14 H+(aq) → 2 Cr3+(aq) + 7 H2O(l) + 3 Br2(l)
2 Br–(aq) → Br2(l) + 2 e– E°oxidation = –1.065 V
Cr2O72–(aq) + 14 H+(aq) + 6 e– → 2 Cr3+(aq) + 7 H2O(l) E°reduction = +1.33 V
E°cell = –1.065 + 1.33 = +0.27 V > 0, therefore spontaneous.
14. Rhodium is a rare metal used as a catalyst. The metal does not react with HCl(aq), but it does react with HNO3(aq), producing Rh3+(aq) and NO(g). Copper will displace Rh3+ from aqueous solution, but silver will not. Estimate a value of E°Rh3+/Rh.
Consider the potentials for the reactions described:
(1)
Rh(s) + HCl(aq) → NR E°cell < 0
E°cell = E°oxidation + E°reduction = – E°Rh3+/Rh + E°H+/H2 < 0
Since 2 H+(aq) + 2 e– → H2(g) E°reduction = 0.00 V, then E°Rh3+/Rh > 0 V.
(2)
Rh(s) + HNO3(aq) + 3 H+(aq) → Rh3+(aq) + NO(g) + 2 H2O(l) E°cell > 0
E°cell = E°oxidation + E°reduction = – E°Rh3+/Rh + E°HNO3/NO > 0
Since HNO3(aq) + 3 H+(aq) + 3 e– → NO(g) + 2 H2O(l)
E°reduction = 0.956 V, then E°Rh3+/Rh < 0.956 V.
(3)
Rh3+(aq) + Cu(s) → Rh(s) + Cu2+(aq) E°cell > 0.
E°cell = E°oxidation + E°reduction = E°Rh3+/Rh + –E°Cu2+/Cu > 0
Since Cu(s) → Cu2+(aq) + 2 e– E°oxidation = –0.340 V, then E°Rh3+/Rh > 0.340 V.
(4)
Rh3+(aq) + Ag(s) → NR E°cell < 0.
E°cell = E°oxidation + E°reduction = E°Rh3+/Rh + –E°Ag+/Ag < 0
Since Ag(s) → Ag+(aq) + e– E°oxidation = –0.800 V, then E°Rh3+/Rh < 0.800 V.
Net conclusion:
0.340 V < E°Rh3+/Rh < 0.800 V
15. Determine the values of E°cell and ΔG° for the following reactions.
(a) O2(g) + 4 I–(aq) + 4 H+(aq) → 2 H2O(l) + 2 I2(s)
(b) Cr2O72–(aq) + 3 Cu(s) + 14 H+(aq) → 2 Cr3+(aq) + 3 Cu2+(aq) + 7 H2O(l)
(a) O2(g) + 4 I–(aq) + 4 H+(aq) → 2 H2O(l) + 2 I2(s)
Reduction: O2(g) + 4 H+(aq) + 4 e– → 2 H2O(l) E°red = +1.229 V
Oxidation: 4 I–(aq) → 2 I2(s) + 4 e– E°ox = –0.535 V
E°cell = +1.229 + –0.535 = +0.694 V
ΔG° = –nFE° = –(4)(96485)(0.694) = –26800 J = –26.8 kJ
(b) Cr2O72–(aq) + 3 Cu(s) + 14 H+(aq) → 2 Cr3+(aq) + 3 Cu2+(aq) + 7 H2O(l)
Reduction: Cr2O72–(aq) + 14 H+(aq) + 6 e– → 2 Cr3+(aq) + 7 H2O(l) E°red = +1.33 V
Oxidation: Cu(s) → Cu2+(aq) + 2 e– E°ox = –0.340 V
E°cell = +1.33 + –0.340 = +0.99 V
ΔG° = –nFE° = –(6)(96485)(0.99) = –570000 J = –570 kJ
16. Determine the values of E°cell and ΔG° for the following reactions.
(a) Al(s) + 3 Ag+(aq) → Al3+(aq) + 3 Ag(s)
(b) 4 IO3–(aq) + 4 H+(aq) → 2 I2(s) + 2 H2O(l) + 5 O2(g)
(a) Al(s) + 3 Ag+(aq) → Al3+(aq) + 3 Ag(s)
Al(s) → Al3+(aq) + 3 e– E°oxidation = +1.676 V
Ag+(aq) + e– → Ag(s) E°reduction = +0.800 V
E°cell = E°oxidation + E°reduction = 1.676 + 0.800 = 2.476 V
ΔG° = –nFE°cell = –(3)(96485)(2.476) = –716700 J = –716.7 kJ
(b) 4 IO3–(aq) + 4 H+(aq) → 2 I2(s) + 2 H2O(l) + 5 O2(g)
2 H2O(l) → O2(g) + 4 H+(aq) + 4 e– E°oxidation = –1.229 V
2 IO3–(aq) + 12 H+(aq) + 10 e– → I2(s) + 6 H2O(l) E°reduction = +1.20 V
E°cell = E°oxidation + E°reduction = –1.229 + 1.20 = –0.03 V
ΔG° = –nFE°cell = –(20)(96485)(–0.03) = +60000 J = +60 kJ
17. Write the equilibrium constant expression for each of the following reactions, and determine the numerical value of Keq at 25 °C.
(a) PbO2(s) + 4 H+(aq) + 2 Cl–(aq) → ← Pb2+(aq) + 2 H2O(l) + Cl2(g)
(b) 3 O2(g) + 2 Br–(aq) → ← 2 BrO3–(aq) (basic solution)
(a) PbO2(s) + 4 H+(aq) + 2 Cl–(aq) → ← Pb2+(aq) + 2 H2O(l) + Cl2(g)
The reaction is already balanced so the mass action expression for the equilibirum constant is easily found by inspection. Since a thermodynamic equilibrium constant is required, aqueous components are given as concentrations and gases are given as partial pressures (pure liquids and pure solids are ignored):
Keq = [Pb2+]ePCl2e/ [H+]e4[Cl–]e2
To find the value of this equilibrium constant, use the Table of Standard Reduction Potentials to find the cell potential and then use this value to find the equilibrium constant.
PbO2(s) + 4 H+(aq) + 2 e– → Pb2+(aq) + 2 H2O(l) E°red = 1.455 V
2 Cl–(aq) → Cl2(g) + 2 e– E°ox = –1.358 V
E°cell = 1.455 – 1.358 = 0.097 V
Keq = exp(nFE°cell/RT)
Keq = exp[(2)(96485)(0.097)/(8.314)(298)] = 1900
(b) 3 O2(g) + 2 Br–(aq) → ← 2 BrO3–(aq) (basic solution)
The reaction is already balanced so the mass action expression for the equilibirum constant is easily found by inspection. Since a thermodynamic equilibrium constant is required, aqueous components are given as concentrations and gases are given as partial pressures (pure liquids and pure solids are ignored):
Keq = [BrO3–]e2/ [Br–]e2PO2e3
To find the value of this equilibrium constant, use the Table of Standard Reduction Potentials to find the cell potential and then use this value to find the equilibrium constant.
O2(g) + 2 H2O(l) + 4 e– → 4 OH–(aq)E°red = 0.401 V
Br–(aq) + 6 OH–(aq) → BrO3–(aq) + 3 H2O(l) + 6 e–E°ox = –0.584 V
E°cell = 0.401 – 0.584 = –0.183 V
Keq = exp(nFE°cell/RT)
Keq = exp[(12)(96485)(–0.183)/(8.314)(298)] = 7×10–38
18. Write the equilibrium constant expression for each of the following reactions, and determine the numerical value of Keq at 25 °C.
(a) Ag+(aq) + Fe2+(aq) → ← Fe3+(aq) + Ag(s)
(b) MnO2(s) + 4 H+(aq) + 2 Cl–(aq) → ← Mn2+(aq) + 2 H2O(l) + Cl2(g)
(c) 2 OCl–(aq) → ← 2 Cl–(aq) + O2(g) (basic solution)
(a) Ag+(aq) + Fe2+(aq) → ← Fe3+(aq) + Ag(s)
Keq = [Fe3+]e/[Ag+]e[Fe2+]e
Ag+(aq) + e–→Ag(s) E°red = 0.800 V
Fe2+(aq)→ Fe3+(aq) + e– E°ox = –0.771 V
E°cell = 0.800 – 0.771 = 0.029 V
Keq = exp(nFE°cell/RT)
Keq = exp[(1)(96485)(0.029)/(8.314)(298)] = 3.1
(b) MnO2(s) + 4 H+(aq) + 2 Cl–(aq) → ← Mn2+(aq) + 2 H2O(l) + Cl2(g)
Keq = [Mn2+]ePCl2e/ [H+]e4[Cl–]e2
MnO2(s) + 4 H+(aq) + 2 e–→Mn2+(aq) + 2 H2O(l) E°red = 1.23 V
2 Cl–(aq) → Cl2(g) + 2 e– E°ox = –1.358 V
E°cell = 1.23 –1.358 = –0.13 V
Keq = exp(nFE°cell/RT)
Keq = exp[(2)(96485)(–0.13)/(8.314)(298)] = 4×10–5
(c) 2 OCl–(aq) → ← 2 Cl–(aq) + O2(g) (basic solution)
Keq = [Cl–]e2PO2e/ [OCl–]e2
OCl–(aq) + H2O(l) + 2 e–→Cl–(aq) + 2 OH–(aq) E°red = 0.890 V
4 OH–(aq)→ O2(g) + 2 H2O(l) + 4 e– E°ox = –0.401 V
E°cell = 0.890 –0.401 = 0.489 V
Keq = exp(nFE°cell/RT)
Keq = exp[(4)(96485)(0.489)/(8.314)(298)] = 1×1033
19. What is the value of Ecell of each of the following reactions when carried out in a voltaic cell?
(a) Fe(s) + 2 Ag+(aq, 0.0015 M) → Fe2+(aq, 1.33 M) + 2 Ag(s)
(b) 4 VO2+(aq, 0.050 M) + O2(g, 0.25 atm) + 2 H2O(l) → 4 VO2+(aq, 0.75 M) + 4 H+(aq, 0.30 M)
Assume 25 °C = 298 K
(a) Fe(s) + 2 Ag+(aq, 0.0015 M) → Fe2+(aq, 1.33 M) + 2 Ag(s)
Fe(s) → Fe2+(aq) + 2 e– E°ox = +0.440 V
Ag+(aq) + e– → Ag(s) E°red = +0.800 V
E°cell = E°ox + E°red = 0.440 + 0.800 = 1.240 V
Use the Nernst equation: Ecell = E°cell – (RT/nF)ln([Fe3+]/[Ag+]2) = 1.240 – (8.314×298/2×96485)ln(1.33/(0.0015)2) = +1.069 V
(b) 4 VO2+(aq, 0.050 M) + O2(g, 0.25 atm) + 2 H2O(l) → 4 VO2+(aq, 0.75 M) + 4 H+(aq, 0.30 M)
VO2+(aq) + H2O(l) → VO2+(aq) + 2 H+(aq) + e– E°ox = –1.000 V
O2(g) + 4 H+(aq) + 4 e– → 2 H2O(l) E°red = +1.229 V
E°cell = E°ox + E°red = –1.000 + 1.229 = 0.229 V
Use the Nernst equation: Ecell = E°cell – (RT/nF)ln([VO2+]4[H+]4/ [VO2+]4)PO2
Ecell = 0.229 – (8.314×298/4×96485)ln((0.75)4(0.30)4/(0.050)4)(0.25) = +0.181 V
20. What is Ecell for the voltaic cell diagrammed below?
Pt | H2(g, 1 atm) | 0.0025 M HCl || H+ (1 M) | H2(g, 1 atm) | Pt
Anode (oxidation) reaction: H2(g) → 2 H+(aq) + 2 e– E°ox = 0.000 V
Cathode (reduction) reaction: 2 H+(aq) + 2 e– → H2(g) E°red = 0.000 V
Net reaction: 2 H+(aq) + H2(g) → 2 H+(aq) + H2(g) E°cell = 0.000 V
Ecell = E°cell – (RT/nF)ln([H+]2anodePH2cathode)/ [H+]2cathodePH2anode)
Ecell = 0.000 – (8.314×298/2×96485)ln((0.0025)2(1)/(1)2(1))
Ecell = +0.15 V
21. How many coulombs of electric charge are required to deposit 25.0 g of Cu(s) at the cathode in the electrolysis of CuSO4(aq)?
25.0 g Cu(s) = 25.0/63.5 g/mol = 0.394 mol
Cu2+(aq) + 2 e– → Cu(s)
so 0.394 mol Cu requires 2×0.394 = 0.788 mol electrons
coulombs = mols electrons × Faraday's constant = 0.788 × 96485 = 7.60×104 coulombs.
22. Balance the following redox equations.
(a) B2Cl4(aq) + OH–(aq) → BO2–(aq) + Cl–(aq) + H2O(l) + H2(g)
(b) CH3CH2ONO2(aq) + Sn(s) + H+(aq) → CH3CH2OH(aq) + NH2OH(aq) + Sn2+(aq) + H2O(l)
(c) F5SeOF(aq) + OH–(aq) → SeO42–(aq) + F–(aq) + H2O(l) + O2(g)
(d) As2S3(s) + OH–(aq) + H2O2(aq) → AsO43–(aq) + SO42–(aq) + H2O(l)
(e) XeF6(s) + OH–(aq) → XeO64–(aq) + F–(aq) + H2O(l) + Xe(g) + O2(g)
(a) B2Cl4(aq) + OH–(aq) → BO2–(aq) + Cl–(aq) + H2O(l) + H2(g)
Oxidation: B2Cl4(aq) + 4 H2O(l) → 2 BO2–(aq) + 4 Cl–(aq) + 8 H+(aq) + 2 e–
Reduction: OH–(aq) + 3 H+(aq) + 2 e– → H2O(l) + H2(g)
Net in acid: B2Cl4(aq) + OH–(aq) + 3 H2O(l) → 2 BO2–(aq) + 4 Cl–(aq) + 5 H+(aq) + H2(g)
Neutralization: 5 H+(aq) + 5 OH–(aq) → 5 H2O(l)
Net in base: B2Cl4(aq) + 6 OH–(aq) → 2 BO2–(aq) + 4 Cl–(aq) + 2 H2O(l) + H2(g)
(b) CH3CH2ONO2(aq) + Sn(s) + H+(aq) → CH3CH2OH(aq) + NH2OH(aq) + Sn2+(aq) + H2O(l)
Oxidation: Sn(s) → Sn2+(aq) + 2 e–
Reduction: CH3CH2ONO2(aq) + 6 H+(aq) + 6 e– → CH3CH2OH(aq) + NH2OH(aq) + H2O(l)
Net in acid: CH3CH2ONO2(aq) + 3 Sn(s) + 6 H+(aq) → CH3CH2OH(aq) + NH2OH(aq) + 3 Sn2+(aq) + H2O(l)
(c) F5SeOF(aq) + OH–(aq) → SeO42–(aq) + F–(aq) + H2O(l) + O2(g)
Oxidation: OH–(aq) + H2O(l) → O2(g) + 3 H+(aq) + 4 e–
Reduction: F5SeOF(aq) + 3 H2O(l) + 2 e– → SeO42–(aq) + 6 F–(aq) + 6 H+(aq)
Net in acid: 2 F5SeOF(aq) + OH–(aq) + 7 H2O(l) → 2 SeO42–(aq) + 12 F–(aq) + O2(g) + 15 H+(aq)
Neutralization: 15 H+(aq) + 15 OH–(aq) → 15 H2O(l)
Net in base: 2 F5SeOF(aq) + 16 OH–(aq) → 2 SeO42–(aq) + 12 F–(aq) + 8 H2O(l) + O2(g)
(d) As2S3(s) + OH–(aq) + H2O2(aq) → AsO43–(aq) + SO42–(aq) + H2O(l)
Oxidation: As2S3(s) + 20 H2O(l) → 2 AsO43–(aq) + 3 SO42–(aq) + 40 H+(aq) + 28 e–
Reduction: H2O2(aq) + 2 H+(aq) + 2 e– → 2 H2O(l)
Net in acid: As2S3(s) + 14 H2O2(aq) → 2 AsO43–(aq) + 3 SO42–(aq) + 12 H+(aq) + 8 H2O(l)
Neutralization: 12 H+(aq) + 12 OH–(aq) → 12 H2O(l)
Net in base: As2S3(s) + 12 OH–(aq) + 14 H2O2(aq) → 2 AsO43–(aq) + 3 SO42–(aq) + 20 H2O(l)
(e) XeF6(s) + OH–(aq) → XeO64–(aq) + F–(aq) + H2O(l) + Xe(g) + O2(g)
Oxidation: OH–(aq) + H2O(l) → O2(g) + 3 H+(aq) + 4 e–
Reduction: 2 XeF6(s) + 6 H2O(l) + 4 e– → XeO64–(aq) + 12 F–(aq) + Xe(g) + 12 H+(aq)
Net in acid: 2 XeF6(s) + OH–(aq) + 7 H2O(l) → XeO64–(aq) + 12 F–(aq) + Xe(g) + O2(g) + 15 H+(aq)
Neutralization: 15 H+(aq) + 15 OH–(aq) → 15 H2O(l)
Net in base: 2 XeF6(s) + 16 OH–(aq) → XeO64–(aq) + 12 F–(aq) + 8 H2O(l) + Xe(g) + O2(g)