Name:

chm112final2014

Short Answer

1. For a first-order reaction that has a rate constant of $1.9 \times 10^{-7} \mathrm{~s}^{-1}$;
a) if the initial concentration of the only reactant is 1.25 M , what is the concentration after 30.0 min min ?
b) How long will it take for the concentration to decrease to 0.75 M ?
c) How long will it take for the reaction to be 90% complete?
2. Two reactants, A and B, are mixed, and the reaction is timed until a color change occurs. The data from three experiments are as follows:

$[\mathrm{A}]$	$[\mathrm{B}]$	time (sec)
0.100	0.140	25
0.050	0.140	50
0.100	0.070	100

What is the order of the reaction with respect to A and B ? What is the overall order of the reaction?
3. A coffee machine has become coated with $10.0 \mathrm{~g} \mathrm{CaCO}_{3}$. If the machine is washed with 1.00 L of pure water until equilibrium is reached, what fraction of the precipitate is removed? $\mathrm{K}_{\text {sp }}$ for CaCO_{3} is 5.05×10^{-9}.
4.

Inhalation of carbon monoxide, CO, is fatal if about 20% of the lung's hemoglobin output is "tied up" as the complex heme-CO.
The reaction can be expressed as:

$$
\mathrm{CO}+\text { heme- } \mathrm{O}_{2} \quad \mathrm{O}_{2}+\text { heme- } \mathrm{CO} \quad \mathrm{Kc}=420
$$

If a person is breathing air that is $.0085 \mathrm{M} \mathrm{O}_{2}$ (normal air), what concentration of CO will be fatal? (All species may be considered to be in the same phase)
5.

The rate constants for a reaction were determined at two temperatures.
At 100.0 degrees K the rate constant is $2.0 \times 10^{3} \mathrm{~s}^{-1}$, and at 500 degrees K the rate constant is $4.0 \times 10^{7} \mathrm{~s}^{-1}$. Calculate the activation energy for the reaction.
6. Consider the following gas phase reaction:

$$
\mathrm{A} \rightarrow \mathrm{~B}+\mathrm{C}
$$

These are the relevant thermodynamic data.

	$\Delta \mathrm{Hf}^{\mathrm{o}}, \mathrm{kJ} / \mathrm{mol}$	$\Delta \mathrm{S}^{\mathbf{o}}, \mathrm{J} / \mathrm{mol}^{\circ} \mathrm{K}$
A	135	197
B	-45	205
C	25	214

Shoe by calculation;
Is this reaction spontaneous at 25 C and 1 atm pressure ?

Will the reaction become spontaneous or nonspontaneous as temperature increases ?

At what temperature will the system be in equilibrium at 1 atm?

What is the value of K
7. 252.0 mL of a 0.980 M solution of a base with $\mathrm{K}_{\mathrm{b}} 1.48 \times 10^{-5}$ was titrated with 1.55 M HCl . What is the pH after 159.3 mL of acid is added?
8. What is the pH of a solution of weak acid after 25% titration with strong base?
$\mathrm{K}_{\mathrm{a}}=1.81 \times 10^{-6}$
9. Calculate the standard free energy change $\triangle G^{\circ}$ for this reaction using standard reduction potentials E^{0}.

$$
\mathrm{F}_{2}(\mathrm{~g})+\mathrm{Sn}(\mathrm{~s}) \rightarrow 2 \mathrm{~F}-(\mathrm{aq})+\mathrm{Sn}^{2+}(\mathrm{aq})
$$

10.

What is the voltage of the following cell?
$\mathrm{Cl}_{2}(\mathrm{~g})\left|\mathrm{Cl}^{-}(\mathrm{aq})(.2 \mathrm{M})\right|\left|\mathrm{Br}^{-}(\mathrm{aq})(.04 \mathrm{M})\right| \mathrm{Br}_{2}(\mathrm{l})$

