chm112final2014

•

Short Answer

1. For a first-order reaction that has a rate constant of $1.9 \times 10^{-7} \text{ s}^{-1}$;

- a) if the initial concentration of the only reactant is 1.25 M, what is the concentration after 30.0 min min?
- b) How long will it take for the concentration to decrease to 0.75 M?
- c) How long will it take for the reaction to be 90% complete?

2. Two reactants, A and B, are mixed, and the reaction is timed until a color change occurs. The data from three experiments are as follows:

[A]	[B]	time (sec)
0.100	0.140	25
0.050	0.140	50
0.100	0.070	100

•

•

What is the order of the reaction with respect to A and B? What is the overall order of the reaction?

3. A coffee machine has become coated with 10.0 g CaCO₃. If the machine is washed with 1.00 L of pure water until equilibrium is reached, what fraction of the precipitate is removed? K_{sp} for CaCO₃ is 5.05 x 10⁻⁹.

Inhalation of carbon monoxide, CO, is fatal if about 20 % of the lung's hemoglobin output is "tied up" as the complex heme-CO.

The reaction can be expressed as:

 $CO + heme-O_2 \qquad O_2 + heme-CO \quad Kc = 420$

If a person is breathing air that is .0085 M O_2 (normal air), what concentration of CO will be fatal? (All species may be considered to be in the same phase)

5.

.

•

The rate constants for a reaction were determined at two temperatures. At 100.0 degrees K the rate constant is $2.0 \times 10^3 \text{ s}^{-1}$, and at 500 degrees K the rate constant is $4.0 \times 10^7 \text{ s}^{-1}$. Calculate the activation energy for the reaction.

6. Consider the following gas phase reaction:

$A \rightarrow B + C$

These are the relevant thermodynamic data.

	∆Hf °, kJ/mol	ΔS° , J/mol °K
А	135	197
В	-45	205
С	25	214

Shoe by calculation; Is this reaction spontaneous at 25 C and 1 atm pressure ?

Will the reaction become spontaneous or nonspontaneous as temperature increases ?

At what temperature will the system be in equilibrium at 1 atm?

What is the value of K

7. 252.0 mL of a 0.980 M solution of a base with K_b 1.48 x 10⁻⁵ was titrated with 1.55 M HCl. What is the pH after 159.3 mL of acid is added?

8. What is the pH of a solution of weak acid after 25% titration with strong base? $K_{\rm a}$ = 1.81 x 10^{-6}

•

•

9. Calculate the standard free energy change $\triangle G^{\circ}$ for this reaction using standard reduction potentials E° .

 $F_2(g) + Sn(s) \rightarrow 2 F(aq) + Sn^{2+}(aq)$

What is the voltage of the following cell?

 $Cl_2(g) \mid Cl^{\text{-}}(aq)(.2M) \mid \mid Br^{\text{-}}(aq)(.04M) \mid Br_2(l)$

10.

•

•