CHM 112 Exam 1 Spring

Short Answer

- 1. For a first-order reaction that has a rate constant of 6.9 x 10^{-4} s⁻¹;
 - a) if the initial concentration of the only reactant is 0.25 M, what is the concentration after 8.4 min?
 - b) How long will it take for the concentration to decrease to 0.15 M?
 - c) How long will it take for the reaction to be 60% complete?

2. The rate constants for a reaction were determined at two temperatures. At 100.0 K the rate constant is 2.0 x 10³ s⁻¹, and at 500.0 K the rate constant is 4.07 x 10⁷ s⁻¹. Calculate the activation energy for the reaction.

3. The reaction between carbon monoxide and nitrogen dioxide has the experimentally determined rate law; rate = $k[NO_2]^2$

$$CO + NO_2 - CO_2 + NO$$

The following mechanisms have been proposed;

•

•

mechanism 1:	$CO + NO_2$	CO_2 + NO
mechanism 2:	$NO_2 + NO_2$ $NO_3 + CO$	$NO_3 + NO$ slow $NO_2 + CO_2$ fast
mechanism 3:	NO_2 NC CO + O	O + O slow CO_2 fast

Which mechanism is most likely. Briefly explain your choice for each possibility

4. In a reversible reaction, the energy of activation for the forward reaction is 118 kJ/mol, and the energy of activation for the reverse direction is 217 kJ/mol. Sketch a reaction coordinate diagram. Label completely. What is the enthalpy, H for the reaction?

5. In a kinetic study of the reactiom;

 $2 \text{ NO}(g) + H_2(g)$ $N_2O(g) + H_2O(g)$

the data for the initial rates;

Initial concentrations (M)		Rate (M/s)
[NO]	[H ₂]	
6.4 x 10 ⁻³	2.2 x 10 ⁻³	2.6x 10 ⁻⁵
12.8 x 10 ⁻³	2.2 x 10 ⁻³	1.0 x 10 ⁻⁴
6.4 x 10 ⁻³	4.4 x 10 ⁻³	5.1x 10 ⁻⁵

Obtain the rate law What is the value of the rate constant?

•

6. The rate constant for a second-order reaction is 1.15/M at 25 degrees C. How long (seconds) will it take for the concentration of the single reactant to decrease from 0.55 M to 0.45 M?

7. Consider this equilibrium; $C(s) + H_2O(g) = CO(g) + H_2(g)$

•

•

Which direction will this reaction go if;

- a) CO is added to the reaction mixture
- b) H₂O is condensed and removed from the reaction mixture
- c) C is added to the reaction mixture