One Page Lesson: The TWO Rules for using Significant Figures in Calculations

1. When multiplying or dividing: Your final result cannot be any more precise than the least precise value used in the calculation. The least precise value is the one with the fewest significant figures.

Seven	Sig Figs	1123.123	Reported Answer
Three	Sig Figs	0.0000123	$\mathbf{0 . 0 1 5}$
Two	Sig Figs	$\frac{\text { X }}{}$0.1 Two Significant Figures 	

2. When adding or subtracting: Your final result cannot have any greater significance than the least significant value used to produce the result. Another way to say this is that the digit that contains the uncertainty in the result is dictated by the least significant value used in the calculation - the one with the uncertainty in the highest decimal place.

Realize that your calculator does NOT know how to apply the significant rules after it has completed the calculation. This means that YOU MUST be smarter than your calculator!
For example, if you multiply two values that contain 3 and 4 significant figures, respectively, the result of your calculation is limited to just three significant figures. The display in your calculator may be able to show as many as seven or eight digits, but YOU must round to only three significant figures, and report the rounded value as your result. In doing this, you're indicating that the uncertainty in your result is in the third digit.
On occasion, you may multiply two values together (containing, as in the example above, 3 and 4 significant figures) to find that your calculator displays a result that has fewer digits in it than either of the numbers that you entered (perhaps it displays only two digits). Again, YOU MUST be smarter than your calculator! In this situation, you should realize that the two numbers just happened to multiply to yield a very simple value, and that you're entitled to add one trailing zero so that the final result that you report has three significant figures (with the uncertainty in the third digit).

A note on rounding to the appropriate number of significant figures: When an answer needs to be expressed with fewer significant figures than are shown on the calculator, here are the rounding rules to follow: If the digit immediately to the right is ≥ 5, round $u p$. If it is <5, just drop the extra digits.

Rounding each of these numbers to THREE significant figures

Original number:	1.23124	0.013968	1.675	0.0003245
Rounded number:	$\mathbf{1 . 2 3}$	$\mathbf{0 . 0 1 4 0}$	$\mathbf{1 . 6 8}$	$\mathbf{0 . 0 0 0 3 2 5}$

