\qquad

CHM 101 Exam 3 Spring 2017

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. Which is the correct orbital diagram for a Nitrogen atom?
a. $\frac{\uparrow \uparrow}{1 s} \quad \frac{\uparrow \uparrow}{2 s} \quad-\frac{\uparrow}{2 p} \uparrow$
b. $\frac{\uparrow \downarrow}{1 s} \quad \frac{\uparrow \downarrow}{2 s} \quad \uparrow \frac{\uparrow}{2 p} \uparrow$
c. $\frac{\uparrow \downarrow}{1 s} \quad \frac{\uparrow \downarrow}{2 s} \quad \uparrow \downarrow \frac{\uparrow}{2 p}-$
2. Which of the following statements applies to \boldsymbol{s} subshells?
a. they contain two s orbitals
c. their orbitals have a spherical shape
b. they can hold a total of 14 electrons
d. all of these
3. Which of the following best explains the relative sizes of the K^{+}and Cl^{-}ions.
a. chlorine is to the right of potassium on the Periodic Table.
b. potassium has a greater molar mass than chlorine
c. potassium is farther down on the Periodic Table
d. chlorine has a smaller nuclear charge, so can't hold electrons as tightly
e. they have a different number of electrons
\qquad 4. Which of these would be the biggest? (Have the largest radius?)
a. Mg^{2+} ion
b. F -ion
c. Al^{3+} ion
d. O^{2-} ion
e. all same size
\qquad 5. Which is the correct shorthand electron configuration for $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$?
a. $\quad[\mathrm{Ne}] 3 \mathrm{~s}^{2}$
b. $\quad[\mathrm{Ar}] 3 \mathrm{~s}^{2}$
c. $[\mathrm{He}] 3 \mathrm{~s}^{2}$
d. none of these
\qquad 6. Atoms or ions are isoelectronic if they have
a. the same electron configuration
d. the same number of protons
b. the same number of neutrons
e. none of these
c. the same number of valence electrons
\qquad 7. Which of the following statements applies to \boldsymbol{d} subshells?
a. their orbitals have a cloverleaf shape
c. they can hold a total of 6 electrons
b. they contain three \boldsymbol{d} orbitals
d. all of these

Short Answer

8. A cylinder with 2.24 liter volume contains $3.20 \mathrm{~g} \mathrm{O}_{2}(\mathrm{~g})$. At $0^{\circ} \mathrm{C}$, how many grams O_{2} must be added to make the pressure 2.00 atm ?
9. A calorimeter contains $150.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ at $25.00^{\circ} \mathrm{C}$. When $1.00 \mathrm{~g} \mathrm{BaCl}_{2}$ is added, the temperature increases to $27.33^{\circ} \mathrm{C}$. Calculate the heat produced.
10. Calculate $\Delta \mathrm{H}$ for the following reaction from the standard enthalpies of formation;
$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{g}) \rightarrow 2 \mathrm{Fe}(\mathrm{l})+3 \mathrm{CO}_{2}(\mathrm{~g})$
$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{f}} \quad(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$-912.2
CO(g) -105.0
Fe(l) 9.7
$\mathrm{CO}_{2}(\mathrm{~g})-393.5$
11. An electron relaxes from the sixth shell to the third shell. Calculate the energy of the transition.
12. What fraction of the total number of electrons in Si are in p subshells?
13. Write the symbol of the element of the lowest atomic number that has more than 6 electrons in its 3 d subshell.
14. How many unpaired electrons in Br ?
15.

What is the frequency of electromagnetic radiation that has a wavelength of
8.80 m ? How much energy, in joules does one photon of this em have?
16.

At STP it was found that 1.19 L of a gas weighed 3.99 g . What is its molecular mass?
17. Calculate the standard enthalpy of formation of SiF_{4}.
$\mathrm{SiO}_{2}(\mathrm{~s})+4 \mathrm{HF}(\mathrm{g}) \quad-->2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{SiF}_{4}(\mathrm{~g}) \quad \Delta \mathrm{H}=-97.8 \mathrm{~kJ}$
$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{SiO}_{2}(\mathrm{~s}) \quad-709.4$
$\mathrm{HF}(\mathrm{g}) \quad-268.6$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad-241.8$
18. Consider the three elements N, C, Si. Using the Periodic table, predict and explain why which of the three elements has;
a) the largest atomic radius
b) the smallest atomic radius
c) the largest ionization energy
d) the smallest ionization energy
19. Find $\Delta \mathrm{H}$ for the reaction below, given the following reactions and $\Delta \mathrm{H}$ values:
$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Given;

$\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l})$	$\Delta \mathrm{H}=-235 \mathrm{~kJ}$
$\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$\Delta \mathrm{H}=-207 \mathrm{~kJ}$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	$\Delta \mathrm{H}=44 \mathrm{~kJ}$

20. A gas at a temperature of $108^{\circ} \mathrm{C}$ occupies a volume of 60.1 L . What will the volume be if the temperature is changed to ${ }^{\circ} 0 \mathrm{C}$?
