Practice Problems with Answers:

1. Without changing the number of significant figures, express each of the following values in scientific notation. Within the parentheses, state how many significant figures are in that value.

a) 123,430.0	1.234300×10^5	(7 sig figs)	f) 12.34	1.234×10^{1}	(4 sig figs)
b) 33375	3.3375×10^4	(5 sig figs)	g) 0.0007	7 x 10 ⁻⁴	(1 sig fig)
c) 506.43	5.0643×10^2	(5 sig figs)	h) 8677.5	8.6775×10^3	(5 sig figs)
d) 0.0100	1.00 x 10 ⁻²	(3 sig figs)	i) 350.053	3.50053×10^2	(6 sig figs)
e) 0.03000111	3.000111 x 10 ⁻²	(7 sig figs)	j) 0.000070	7.0×10^{-5}	(2 sig figs)

- 2. Perform the mathematical operation indicated. Express each answer with the appropriate number of significant figures/decimal places.
- 1.74×10^3 0.3133 x 3.91 x 3.200 x 444 (3 sig figs) a) $\frac{(0.0072) (4.022 \times 10^3)}{(9.03 \times 10^2)}$ b) 0.032 (2 sig figs) $\frac{(1.23 \times 10^4) (1.90 \times 10^{-3})}{(0.033) (5.00 \times 10^2)}$ 1.4 (2 sig figs) c) 44.79 - 2.3 - 0.0045 42.5 (uncertainty in "tenths" place) d) 5.6×10^2 $234.56 + 1.11 + (3.2 \times 10^2)$ (uncertainty in "tens" place) e) $123 + 33.0033 + (2.3 \times 10^{-1}) - (7.900 \times 10^{3}) =$ (uncertainty in "ones" place) f) -7744 $\frac{(5.004 \times 10^{1}) (-1.314 \times 10^{-3})}{(5.89 \times 10^{7}) (6.2 \times 10^{-3})} =$ -1.8×10^{-7} (2 sig figs) g)
- 3. Work the following unit conversions.
- 5.6×10^1 mL to quarts 0.059 quarts a) 98.76 inches to m 2.508 meters b) $7.7 \times 10^1 \, \mu m$ to inches 3.0×10^{-3} inches c) $1.234 \times 10^6 \text{ mg}$ 1.234 kg to milligrams d) 5432.6 micrograms to mg 5.4326 mg e) $1.238 \times 10^6 \text{ cm}$ 123.8 micrometers to cm f) 1.25 grams/mL to kg/L 1.25 kg/L g)

In Section 3, please note that these are *ANSWERS*, and *NOT WORKED SOLUTIONS*. In working problems for an exam or laboratory report, you *MUST* show work to support your answer, clearly indicating the conversion factors with their units, and expressing your result with units and with the appropriate number of significant figures/decimal places.