
CHM 532
Notes on Creation and Annihilation Operators

These notes provide the details concerning the solution to the quantum harmonic oscil-
lator problem using the algebraic method discussed in class. The operators we introduce are
called creation and annihilation operators, names that are taken from the quantum treatment
of light (i.e. photons). The quantum treatment of electromagnetic radiation has similarities
with the harmonic oscillator problem. In the study of photons, creation operators “create”
photons and annihilation operators “annihilate” photons. As discussed below, creation oper-
ators “create” one quantum of energy in the harmonic oscillator and annihilation operators
“annihilate” one quantum of energy.

We begin with the Hamiltonian operator for the harmonic oscillator expressed in terms of
momentum and position operators taken to be independent of any particular representation

Ĥ =
p̂2

2µ
+

1

2
µω2x̂2. (1)

We next introduce the dimensionless operators Q̂ and P̂ , related to x̂ and p̂ by the equations

x̂ =

(
h̄

µω

)1/2

Q̂ (2)

and
p̂ = (µωh̄)1/2P̂ . (3)

Using
[x̂, p̂] = ih̄ (4)

it can easily be shown that
[Q̂, P̂ ] = i. (5)

Substituting Eqs. (2) and (3) into Eq.(1) we obtain

Ĥ =
1

2
h̄ω(P̂ 2 + Q̂2). (6)

We next define

Ĥ1 =
Ĥ

h̄ω
=

1

2
(P̂ 2 + Q̂2). (7)
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It is easy to see that if ψ is an eigenfunction of Ĥ1 with the dimensionless eigenvalue ε, then
ψ is also an eigenfunction of Ĥ with eigenvalue E = h̄ωε.

We next define an annihilation operator by

â =
1√
2
(Q̂+ iP̂ ). (8)

The adjoint of the annihilation operator

â† =
1√
2
(Q̂− iP̂ ) (9)

is called a creation operator. Clearly, â is not Hermitian. Using Eq.(5), it is easy to show
that the commutator between creation and annihilation operators is given by

[â, â†] = 1. (10)

We next solve Eqs.(8) and (9) for Q̂ and P̂

Q̂ =
1√
2
(â+ â†) (11)

P̂ =
1

i
√

2
(â− â†) (12)

and substitute into Eq.(7) to obtain

Ĥ1 =
1

2

(
1

2
(â2 + â†

2

+ ââ† + â†â)− 1

2
(â2 + â†

2 − ââ† − â†â)
)

(13)

=
1

2
(ââ† + â†â). (14)

Using the commutator Eq.(10), the expression for Ĥ1 becomes

Ĥ1 =
1

2
(2â†â+ 1) = N̂ +

1

2
, (15)

where
N̂ = â†â (16)

is called the number operator. We see that if ψn is an eigenfunction function of N̂ with
eigenvalue n; i.e.

N̂ψn = nψn (17)

then ψn is also an eigenfunction of Ĥ1 with eigenvalue n+ 1/2 as well as an eigenfunction of
Ĥ with eigenvalue (n+ 1/2)h̄ω. We seek then the eigenfunctions and eigenvalues of N̂ .

We begin with Eq.(17), and we assume the eigenfunctions have been normalized so that

〈ψn|ψm〉 = δn,m. (18)

We derive the eigenvalues of N̂ by proving a series of lemmas. The proofs of the lemmas
make use of Eq.(10).
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Lemma 1
n ≥ 0. (19)

Proof:
n = 〈ψn|N̂ |ψn〉 (20)

= 〈ψn|â†â|ψn〉 (21)

= 〈âψn|âψn〉 ≥ 0 (22)

2

Lemma 2
N̂ â = â(N̂ − 1). (23)

Proof:
N̂ â = â†ââ (24)

= (ââ† − 1)â (25)

= â(â†â− 1) = â(N̂ − 1). (26)

2

Lemma 3
N̂ â† = â†(N̂ + 1). (27)

Proof:
N̂ â† = â†ââ† (28)

= â†(â†â+ 1) = â†(N̂ + 1). (29)

2

Lemma 4
âψn = c−ψn−1 (30)

where c− is a constant.

Proof:

We must show that âψn is an eigenfunction of N̂ with eigenvalue n− 1.

N̂(âψn) = â(N̂ − 1)ψn = â(n− 1)ψn (31)

= (n− 1)(âψn). (32)

2

Lemma 5
â†ψn = c+ψn+1 (33)

where c+ is a constant.
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Proof:

We must show that â†ψn is an eigenfunction of N̂ with eigenvalue n+ 1.

N̂(â†ψn) = â†(N̂ + 1)ψn = â†(n+ 1)ψn (34)

= (n+ 1)(â†ψn). (35)

2

Lemma 6
c− =

√
n (36)

and
c+ =

√
n+ 1. (37)

Proof:
n = 〈ψn|N̂ |ψn〉 = 〈ψn|â†â|ψn〉 (38)

= 〈âψn|âψn〉 = c2−〈ψn|ψn〉 = c2− (39)

or
c− =

√
n. (40)

Next
n+ 1 = 〈ψn|N̂ + 1|ψn〉 = 〈ψn|â†â+ 1|ψn〉 (41)

= 〈ψn|ââ†|ψn〉 (42)

= 〈â†ψn|â†ψn〉 = c2+ (43)

or
c+ =

√
n+ 1. (44)

2

Lemma 7 n is an integer.

Proof: We use the method of proof by contradiction. We assume n is not an integer, and
show this leads to a result that contradicts one of our lemmas. We consider the process

âψn =
√
nψn−1 (45)

â2ψn =
√
n(n− 1)ψn−2 (46)

until
âmψn =

√
n(n− 1) . . . (n−m+ 1)ψn−m. (47)

If n is not an integer, there exits a series of values of m such that n − m < 0. However,
from the first lemma, the eigenvalue of N̂ must be positive or zero. Consequently, we have
a contradiction, and n must be an integer.
2
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Lemma 8 The smallest value of n is 0.

Proof: Notice that
âψ1 = ψ0 (48)

and
âψ0 = 0. (49)

Then n = 0 is the smallest eigenvalue of N̂ .
2

We have then proved that the eigenvalues of N̂ are n = 0, 1, 2, . . ., and as a consequence,
the eigenvalues of Ĥ are En = (n + 1/2)h̄ω with n = 0, 1, 2, . . ., in agreement with the
solution by differential equation. We next show that all matrix elements and expectation
values of observables with respect to harmonic oscillator eigenfunctions can be evaluated
using creation and annihilation operators. From Eqs.(2) and (11), we can write

x̂ =

(
h̄

2µω

)1/2

(â+ â†). (50)

Then

〈ψn|x̂|ψm〉 =

(
h̄

2µω

)1/2

〈ψn|â+ â†|ψm〉 (51)

=

(
h̄

2µω

)1/2

〈ψn|(
√
m|ψm−1〉+

√
m+ 1|ψm+1〉) (52)

=

(
h̄

2µω

)1/2

(
√
mδn,m−1 +

√
m+ 1δn,m+1). (53)

The expectation value of x (i.e. n = m) vanishes for any value of n. To evaluate matrix
elements of x̂2, we use the operator

x̂2 =
h̄

2µω
(â+ â†)2 (54)

=
h̄

2µω
(â2 + â†2 + 2N̂ + 1). (55)

We end by showing that creation and annihilation operators can be used to construct
the eigenfunctions of the Hamiltonian. We begin with the expression

âψ0 = 0. (56)

From Eq.(8), we have
1√
2
(Q̂+ iP̂ )ψ0 = 0. (57)
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Now

P̂ =

(
1

µωh̄

)1/2

p̂ (58)

=

(
1

µωh̄

)1/2
h̄

i

d

dx
=

(
1

µωh̄

)1/2
h̄

i

dQ

dx

d

dQ
(59)

(
1

µωh̄

)1/2
h̄

i

(
µω

h̄

)1/2 d

dQ
=

1

i

d

dQ
. (60)

Then from Eq.(57)
dψ0

dQ
+Qψ0 = 0 (61)

which is easily solved to give
ψ0 = Ae−Q2/2 (62)

where A is a constant. Using Eq.(2), ψ0 can be expressed in terms of the coordinate x and
subsequently normalized to determine A. To determine ψ1, we use

â†ψ0 = ψ1 =
1√
2

(
Q− d

dQ

)
ψ0 = A′Qe−Q2/2 (63)

whereA′ is a constant. Again, using Eq.(2), ψ1 can be expressed in terms of x and normalized.
Finally, it is easy to show that

ψn =
1√
n!
â†nψ0. (64)
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