Chemistry 432
Problem Set 2
Spring 2018
Solutions
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Show that if we write ‘
W(a, 1) = (x)e "

we obtain )
Hy = EY
where F is the energy of the system.
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3. The momentum operator is defined by

. hd

P= e

Determine which of the following functions are eigenfunctions of the momentum oper-
ator (k is a constant):

(a) sinkzx
Answer:

psinkxr = ——sinkx = —k cos kx # const. sin kx
i dx i

Not an eigenfunction

(b) eikx
Answer 5 d
Aeikaz — fﬁeikx — hkezkx
1 dx
Eigenfunction
(c) «*
Answer:
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Not an eigenfunction

4. If 20 coins weigh 10 grams each, 30 coins weigh 4 grams each and 10 coins weigh 8
grams each, compute the average weight, < w >, of the 60 coins. Also compute < w? >
and < w >2. If all the 60 coins weighed 5 grams each, find < w >, < w? > and < w >2.
Answer:



20k 10+30 x4 +10x8

(w) = 60 g =6.67g
20 x 102+30><42+10><82
(w?) = = = 52¢°
(w)? = 44.5g*
(b)
(w) = 5g

() = fw)? = 25¢°

5. The wavefunction for a quantum particle of mass m confined to move in the domain

0 <z < Lis given by
(x) = Nsin(4drz/L)

where N is the normalization factor.
(a) Normalize the wavefunction.
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(b) Calculate the expectation value of x for the particle.
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(c) Calculate the expectation value of p for the particle.
Answer:
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(d) Calculate the expectation value of the kinetic energy of the particle.
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(e) Calculate the probability of finding the particle in the region from x = 0 to
r=L/4.
Answer:
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6. The state of a one-dimensional quantum system is represented by the wavefunction
Y(z) = N sin(3mx)

for 0 < z < 1 with N being the normalization factor. Calculate the probability that a
measurement of the position of the particle will give a result in the range 2/3 < x < 1.
Answer:
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or

N =12
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7. The wavefunction for a one-dimensional particle of mass m confined to move on the
interval 0 < x < 7 is given by

Y(z) = Nsin(7x)

where N is the normalization constant. Normalize the wavefunction to calculate N,
and then calculate the expectation value of the kinetic energy of the particle.
Answer:
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8. The wavefunction for a harmonic oscillator of mass m and natural frequency w is given
by
Y(x) = exp(—mwz?/2h).

Normalize this wavefunction and evaluate (z). Note the domain of this problem is
—00 < x < 00.

Answer:
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9. The wavefunction for a quantum system on the domain —oo < = < oo is given by

Y(x) =N e~ where a is a constant and N is the normalization constant. Normalize
the wavefunction and calculate an expression for the expectation value of z%; i.e. (x?).

Answer: - -
/ |2 da = N2/ ¢=205 gy
1/2
— N? <W> —1
2a
N (2@) 1/4
T
and i
2& _az?
o) = () e
(@) = [ v @)at(e)de

2 1/2 o)
— <a) / e~ g2 o
T —00

_ (2&)1/2/00 x26_2a$2dx: <2a>1/2 7'[‘1/2 :i
T —o0 T 2(2a)3/? 4a

10. A particle of mass m is confined to move in one dimension on the domain 0 < x < oo,

11.

and its quantum state is associated with the wavefunction ¢(z) = Nze™* where N
is the normalization and a is a constant having units of inverse length. Normalize the
wavefunction and derive an expression for (1/x) for the particle.
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The ground-state wavefunction for a quantum particle of mass m defined on the domain
0 <z < ooisgiven by ¥(z) = Nz e~ where a is a constant having units of inverse
length squared and N is the normalization constant. Derive an expression for (z2)
for the particle.

Answer:
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12. The state of a one-dimensional quantum particle of mass m on the interval 0 < x < oo
is represented by the wavefunction

Y(xr) = Nxe

where N is the normalization constant and a is a constant having units of inverse
length. Normalize the wavefunction and use the normalized wavefunction to determine
the expectation value of the linear momentum p of the particle.

Answer:
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13. A one-dimensional particle of mass m occupies the interval 0 < z < oo in a state
defined by the wavefunction

U(x) = Nxe

where N is the normalization constant and a is a constant having units of inverse
length. Normalize the wavefunction, and use the normalized wavefunction to calculate

the expectation value of the kinetic energy (T') of the particle.
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14. The unnormalized wavefunction for a quantum particle on the domain 0 < x < oo is
given by
2
Y(x) = Nxe

where N is the normalization and a is a constant having units of the square of the
inverse length. Calculate the expectation value of 2% for the particle.
Answer:
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