
CHM 335 - Physical Chemistry Laboratory
Course Syllabus

Fall 2020

Contents

1 Instructors 4

2 Teaching Assistants 4

3 Text Book 4

4 Classroom 5

5 Covid-19 Statement 5

6 Laboratory Safety 5

7 Course Requirements 5

8 Data Collection 6

9 Grading 7

10 Outline of the Laboratory Procedure 7

11 Plagiarism 8

12 Schedule 9

13 The CHM 335 Web page 10

14 The Diffusion of Salt Solutions into Pure Water 13
14.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
14.2 Laboratory Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1



15 Notes on Error Analysis 20
15.1 Reading Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
15.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
15.3 Systematic and Random Errors . . . . . . . . . . . . . . . . . . . . . . . . . 21
15.4 The Distribution of Random Errors - The Gaussian Distribution . . . . . . . 21
15.5 Calculation of Random Errors for a Finite Set of Laboratory Measurements . 23
15.6 Error Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
15.7 Errors from a Graphical Analysis of the Data . . . . . . . . . . . . . . . . . 28

16 Experiment 9(28)a: The Intrinsic Viscosity of Polyvinyl Alcohol 31
16.1 Introduction and Reading Assignments . . . . . . . . . . . . . . . . . . . . . 31
16.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
16.3 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
16.4 Laboratory Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

17 Experiment 9(28)b: The Intrinsic Viscosity of Polyvinyl Alcohol 34
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
17.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
17.3 Cleaning Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
17.4 Laboratory Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

18 Format of Laboratory Reports for Remaining Experiments 36

19 Experiment 7(13) - The Vapor Pressure of a Pure Liquid 37
19.1 Reading Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
19.2 Experimental Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
19.3 Laboratory Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

20 Experiment 6(11) - Freezing-point Depression of Strong and Weak Elec-
trolytes 39
20.1 Reading Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
20.2 Experimental Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
20.3 Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
20.4 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
20.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

21 Experiment 6 - The Heat of Combustion of Organic Compounds 41
21.1 Reading Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
21.2 Experimental Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
21.3 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2



22 Experiment Number 3(3) - Heat Capacity Ratio of Gases 42
22.1 Reading Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
22.2 Theoretical Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
22.3 Experimental Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
22.4 Laboratory Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

23 Experiment 8(25) - Surface Tension of Solutions 47
23.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
23.2 Experimental Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
23.3 Laboratory Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
23.4 Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

24 Tables of Data 56

3



1 Instructors

1. Prof. Dugan Hayes (Tuesday and Thursday’s Sections)
374 E Beaupre
Phone: 874-5516
Office Hours: Tu,Th 10
e-mail:dugan@uri.edu

2. Prof. David L. Freeman (Wednesday and Friday’s Sections)
474 C Beaupre
Phone: 874-5093
Office Hours: MWF 10
e-mail:dfreeman@uri.edu

2 Teaching Assistants

1. Carson Hasselbrink
360 Beaupre
Office Hours: M 10
e-mail:clhassel@uri.edu

2. Missy Smith
365 Beaupre
Office Hours: W 11
e-mail: melissa-smith@uri.edu

3. Sophia Tiano
375 Beaupre
Office Hours:Th 11
e-mail: sophia tiano@uri.edu

4. Danielle Jacoby
375 Beaupre
Office Hours: Tu 10
e-mail: djacoby@uri.edu

3 Text Book

Experiments in Physical Chemistry, Garland, Nibler and Shoemaker (McGraw-Hill, 2018)
ISBN-13:9781307253931, URI Package, Available only in the URI Bookstore
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4 Classroom

280 Beaupre

5 Covid-19 Statement

Because of the COVID-19 pandemic in all classroom settings including your work in lab, at
all times you must 1) keep a social distance of 6 feet from all other persons and 2) wear
a face mask. Additionally, as discussed below, you must wear safety goggles in room 280
Beaupre. If you feel ill in any way, you are not to come to class. If you are feeling ill on a
CHM 335 class day, you should contact both the instructor in charge of your session and the
TA in charge of the experiment performed on that date. We will make accommodations for
any missed work.

6 Laboratory Safety

You must wear safety glasses with side guards or safety goggles and have them
on before you enter the laboratory. Of course, you must continue to wear them
while in the lab. You must also wear a laboratory coat, and you may not wear
open-toed shoes or sandals. Nitrile gloves will be provided at the beginning
of each in-person laboratory experiment. You must wear the nitrile gloves the
entire time you are in the laboratory. You must always wear a face mask while
in Beaupre. Your face masks can either be cloth or disposable. If you ever are
in the lab without a face mask, you will be removed from lab, and you will not
be allowed to make up the experiment.. If you are ever in the laboratory without
eye protection or a lab coat, you will have 5 points deducted from your next laboratory
report. Repeated offenses will result in failure in the course. Be sure to bring your safety
and covid equipment to the second class meeting, so that you will be allowed to perform the
first experiment of the semester.

All students must complete the Department Safety and Environmental Compliance Form.
All students must have their Medical Information Form with them during every laboratory
period.

7 Course Requirements

This semester you are to take part in eight experiments. Most of the eight experiments are
to be performed by you in the laboratory, with a few experiments either performed remotely
or with data provided to you for analysis.

Some of the experiments are to be performed with a laboratory partner. Even though
you may collect data with a partner, you are responsible for your own labora-
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tory reports. Identical or nearly identical laboratory reports from two or more
students are treated as cases of plagiarism.

The first experiment, to be performed during the second week of classes, is a study of
the diffusion of ionic species in water. You will work with a partner. In this experiment you
extract data and confirm that concentration gradients migrate with a particular functional
dependence on the time. Details are given in section 14.

For the third week of classes, you will be given a lecture on error analysis. The error
analysis lecture will be given remotely. Even though you have no experiment for the third
week, you still need to submit your diffusion reports electronically.

In the second experiment you measure the viscosity of polyvinyl alcohol in water. The
purpose of this experiment is to instruct you in the principles of experimental error. You
repeat your measurements many times to observe the statistical distribution of error. Your
laboratory reports on this experiment emphasize the analysis of these errors. Details are
given in Section 16.

You will not actually perform the third experiment, but rather one of the graduate as-
sistants will send you data. The third experiment again involves the viscosity of polyvinyl
alcohol solutions, but after chemical degradation. The purpose is to learn structural in-
formation about the polymer from bulk measurements. The laboratory report from this
experiment incorporates all sections learned in the first two experiments, and constitutes a
complete laboratory report. As with all experiments, the report for this project is due one
week after you receive the data.

The next two experiments are 4) the vapor pressure of a liquid and 5) the freezing
point depression of weak electrolytes, which you will perform in the lab. The final three
experiments are 6) the heat of combustion of organic compounds, 7) the heat capacity ratio
of gasses and the surface tension of solutions, which will be performed by a TA. You will
not be present for these experiments owing to problems expected ensuring social distancing;
instead, you will either observe the experiment remotely, or data for the experiments will be
sent to you. Whether you perform the experiments yourself or use provided data, complete
laboratory reports are to be submitted for each of these experiments.

8 Data Collection

Where possible, all data generated in the laboratory should be entered into a laboratory
notebook. Laboratory notebooks can be purchased in the bookstore, and the bookstore
notebooks generate carbonless copies, so that a copy of your data is automatically generated.
In some instances the data you generate cannot be entered into the notebook. Your TA will
inform you when the notebooks are not required. The copy of your data signed by your TA
should be included in the data portions of your laboratory reports.
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9 Grading

Each laboratory report is worth 100 points. These reports must be submitted electroni-
cally and are due exactly one week after the completion of a given experiment. The reports
should be uploaded before coming to class. If, because of a holiday, classes do not meet one
week following the completion of an experiment, the report is due on the first day of classes
following the holiday. For example, this semester Tuesday, November 3 is election day, and
the University is closed. The reports for any experiment performed on Tuesday, October 27
are due on Wednesday, November 4 rather than the nominal due date of November 3. In a
similar fashion, if a class is canceled because of weather (or any other reason) the report is
due the day following the canceled class or the next date the University is officially open.
Reports are due at the beginning of the class on the due date. Late reports
will be accepted for grading up to one week after the due date. However, late
reports are assessed a penalty of 2 points for each day that they are late. Re-
ports submitted more than one week past the due date will not be accepted for
grading, and such reports will receive a score of 0. Your laboratory reports must
show all calculations, not just sample calculations of each type.

Your grades are determined on an absolute scale. The scale is
A : 745 to 800 points
A- : 720 to 744 points
B+ : 695 to 719
B : 665 to 694
B- : 640 to 664
C+ : 615 to 639
C : 585 to 614
C- : 560 to 584
D+ : 535 to 559
D : 480 to 534
F : < 480

10 Outline of the Laboratory Procedure

The following pertains to laboratory experiments, which you actually perform. For experi-
ments either performed by your TA remotely or where data are provided by your TA, the
“Procedure” sections of your reports are not required. However, the data you use must be
attached.

Before being allowed to begin any of the experiments in this course, you are required to
prepare an outline of the experimental procedure. You should prepare the outline at home,
and bring it to class with you. Your TA then signs and dates the outline before you begin the
experiment. The signed outline must be attached to your laboratory report. No laboratory
reports can be graded without the attached signed outline.

At the completion of an experiment, you must present your data to your TA. The TA
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then signs and dates the data. The original signed data must be attached to your laboratory
reports for grading. No laboratory report can be graded without the signed data attached.

11 Plagiarism

One of our goals in this course is to reinforce the importance of scientific integrity. In recent
years, there have been numerous examples of established scientists generating falsified data
or copying material from another source. Acts of plagiarism both damage science and can
have important impacts on society. The possibly falsified data associated with the connection
between childhood vaccines and autism is an important recent example that has adversely
affected both science and public health. Acts of plagiarism have destroyed many scientific
careers. Consequently, we want to make clear to you what plagiarism is and penalize acts of
plagiarism in a manner that makes clear its seriousness.

Your laboratory reports contain information about the purpose, theory and results of
your experiments. Each of you prepares a laboratory report associated only with your name.
By implication you are the sole author of that report, and no section of your report can
be identical (or nearly identical) to that of another person without attribution. Reports or
sections of reports identical to any other source whether that source be another student, a
section of a book, or information obtained from others on the web is treated as plagiarism.
In CHM 335 the first instance of plagiarized sections are to receive a grade of 0. For repeat
instances of plagiarism, the entire report will receive a 0. Any clear incidence of plagiarism
will be reported to the Dean of the appropriate college, the Dean of Arts and Sciences and
the Chemistry Department Chair.

In CHM 335 there is one exception to this policy. You often generate your data with a
laboratory partner or data are provided to you. The original data included in your reports,
and only the original data, should be identical to that of your laboratory partners. The other
sections of your reports, including all written work and all calculations cannot be identical
to anyone including your laboratory partners.

As an example in the first experiment of the semester you determine the diffusive behavior
of ionic salts in water. The data from this experiment consists of a sheet of graph paper
with multiple curves in different colors generated as a function of time. At the end of the
experiment each set of partners has one sheet of graph paper with the same curves. The
data is then photocopied in color, and each partner receives either the original sheet or the
photocopy. This original data should be included in each partner’s laboratory report, and
the data are clearly identical for each partner.

To analyze this data each partner must separately generate numbers from the graphs
using a ruler and a set of points on the graph chosen by each individual in a manner to
be discussed later this semester. It is impossible for the generated numbers to be identical
between partners even though the curves are identical. Identical generated data from this
experiment or any other experiment is an example of plagiarism.

Another possible source of plagiarism can occur if you do not analyze your data by your-
self. Students often work together, and the plagiarism policy is not designed to discourage
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collaborative learning. However, in the end, your calculations must be your own done in
your unique fashion. The sections of your reports containing the calculations must not be
identical or nearly identical to anyone else. From experience it is not possible for any two
people analyzing the same data to obtain exactly the same set of calculations in the same or-
der with the same final results. To avoid even the appearance of plagiarism, if you decide to
study with another student, you must perform your calculations by yourself or with the help
of one of the instructors. Nearly identical calculation sections are examples of plagiarism.

12 Schedule

1. Week 1: Lecture and Orientation (Virtual Lecture)
Tuesday - Sept. 15
Wednesday - Sept. 9
Thursday - Sept. 10
Friday - Sept. 11

2. Week 2: The Diffusion of Salt Solutions
Tuesday - Sept. 22
Wednesday - Sept. 16
Thursday - Sept. 17
Friday - Sept. 18

3. Week 3: Virtual Error Analysis Lecture
Tuesday - Sept. 29
Wednesday - Sept. 23
Thursday - Sept. 24
Friday - Sept. 25

4. Week 4: The Viscosity of Polyvinyl Alcohol, Part a
Tuesday - Oct. 6
Wednesday - Sept. 30
Thursday - Oct. 1
Friday - Oct. 2

5. Week 5: The Viscosity of Polyvinyl Alcohol, Part b (No experiment - data to be
provided by TA)
Tuesday - Oct. 13
Wednesday - Oct. 7
Thursday - Oct. 8
Friday - Oct. 9

6. Week 6: Vapor Pressure of a Pure Liquid
Tuesday - Oct. 20
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Wednesday - Oct. 14
Thursday - Oct. 15
Friday - Oct. 16

7. Week 7: Freezing Point Depression
Tuesday - Oct. 27
Wednesday - Oct. 21
Thursday - Oct. 22
Friday - Oct. 23

8. Week 8: Heat of Combustion of Organic Compounds (remote experiment)
Tuesday - November 10
Wednesday - Oct. 28
Thursday - Oct. 29
Friday - Oct. 30

9. Week 9: Heat Capacity Ratio of Gases (remote experiment)
Tuesday - Nov. 17
Wednesday - Nov. 4
Thursday - Nov. 5
Friday - Nov. 6

10. Week 10: Surface Tension of Solutions (remote experiment)
Tuesday - November 24
Wednesday - November 18
Thursday - November 12
Friday - November 13

13 The CHM 335 Web page

It is expected that for most of you, success in this course will require some level of help beyond
classroom instruction. Because some of you may find it difficult to come to the scheduled
office hours, we have installed web pages, including a page that can be used to submit ques-
tions. Our course web page can be found at http://www.chm.uri.edu/courses/?chm335&1.
Questions are submitted by anyone in the class by filling out a form on the web page, and
answers are distributed either to the entire class or only to the person asking the question.
If the entire class is to receive a copy of the question and answer, the question is treated as
anonymous; i.e. the person who asks the question is never identified. In fact, it is possible
to submit a question so that even the instructor does not know who submitted the question.
Anonymous questions and responses by the instructor are distributed automatically to ev-
eryone in the class. With ordinary electronic mail, there is a private correspondence between
the student and instructor. By using the web page, the entire class has an opportunity to
learn from the questions submitted.
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The use of the web page does not preclude personal interaction between any of you and
the course instructor. Dr. Freeman, Dr. Hayes and the teaching assistants all have regular
office hours, and you are all encouraged to make use of these hours. Alternate meeting times
can be arranged by appointment. Additionally, you can contact the instructors by e-mail or
telephone. The e-mail addresses and phone numbers for all the instructors are given in this
syllabus.

Any student in CHM 335 can submit questions and comments to the instructors. Sub-
mission of such comments or questions must be made using the WWW home page for this
course. The address (URL) of our home page is
http://www.chm.uri.edu/courses/?chm335&1 . To submit a question to the list, you must
click on the highlighted text that says “submit a question to the CHM 335 list.” As an
example of how to use the list, suppose a student in our class, Ms. Benzene Ring, wonders,
“How do I propagate errors for ln p where p is the pressure?” (If you don’t know what this
means, don’t worry. You will understand the question later in the semester). To obtain an
answer to her question, Ms. Ring links her web browser (e.g. Safari, Chrome, Firefox or
Microsoft Internet Explorer) to http://www.chm.uri.edu/courses/?chm335&1, and she then
clicks on the text linking her to the page for questions (i.e. the highlighted text that says
“submit a question to the CHM 335 list”). Ms. Ring then enters her e-mail address in the
appropriate box and specifies whether she wants her question to be answered to the entire
CHM 335 class or to her alone. Ms. Ring then types in the large box
How do I propagate errors for ln p where p is the pressure?

Ms. Ring then clicks the “send” button. Ms. Ring’s question is received by the course in-
structors. One of the instructors then sends an e-mail message to the whole list that might be

Subject: errors

The question is: How do I propagate errors for ln p where p is the pressure?

Answer: Take the differential. Let y=ln p. Then dy = dp/p, and the error in

y (ln p) is given by e(y)=e(p)/p where e(y) means the error in y.

Now Ms. Ring and the entire class have an answer to her question.
If the answer to the question can be sent to the entire list, the answer will not indicate

who asked the question. If Ms Ring wants to ask the question with full anonymity so that
even the instructors have no idea who asked the question, the e-mail portion of the form can
be left blank. Of course, if the e-mail section of the form is blank, the answer must be sent
to the list and not just to the sender.

Because many questions may contain mathematical formulas, we need a notation to
communicate the special symbols used in the course. To avoid confusion, it is most useful
if we agree on the same set of symbols. The symbols that follow are taken from a language
called LATEX. LATEX is a language that is frequently used to prepare scientific documents,
and LATEX can be used to translate special symbols into simple text characters. By learning
LATEX notation, you will learn a widely used method to communicate mathematical symbols
via e-mail. The instructors plan to use these symbols in answering your questions, and it is
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asked that you use the same symbols in posing questions. The most important symbols are
the following:

1. Greek letters are represented by \ followed by the name of the letter. For example
α is typed \alpha, β is typed \beta, and so on. A Greek letter is made upper case
by making the first letter of its name upper case. For example, the letter ∆ is typed
\Delta.

2. Subscripts are represented by {} where the brackets contain the subscripts. For ex-
ample, µij is typed \mu {ij}.

3. Superscripts are represented by ˆ{} where the brackets contain the superscripts. For
example, β12 is typed \beta^{12}.

4. Infinity (∞), is typed \infty.

5. The integral sign
∫

is typed \int. The limits on a definite integral are included by intro-
ducing subscripts and superscripts. As an example

∫∞
0 e−x

2
dx is typed \int {0}^{\infty}

e^{-x^{2}} dx.

6. The partial derivative symbol ∂ is typed \partial.

7. The summation sign
∑

is typed \sum. The lower and upper limits of summation are in-
cluded as subscripts and superscripts. As an example

∑∞
n=0 1/n2 is typed \sum {n=0}^{\infty}

1/n^{2}.

8. Square roots
√
a+ b are typed \sqrt{a+b}.

9. The arrow in chemical reactions→ is typed --->. For example C+O2 → CO2 is typed
C + O {2} ---> CO {2}.

Let us now look at another example of a question submitted using the web. In this case,
Ms. Ring has a question requiring an equation. This might be a real question. If you don’t
understand the context, don’t worry. You will understand the details of the question later
in the course. Suppose Ms. Ring wants to ask

“In deriving the expression for the phase equilibrium line between gas and liquid, when
evaluating the integral expression

ln
p2

p1

=
∫ T2

T1

∆H

R

dT

T 2

∆H is taken outside the integral. What is the justification for this?”

To submit the question, Ms. Ring uses her web browser to navigate to
http://www.chm.uri.edu/courses/?chm335&1, clicks on the line that says, “submit a ques-
tion to the CHM 335 list,” and then Ms. Ring enters the information requested by the form.
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If Ms. Ring wishes to remain anonymous, Ms. Ring leaves the e-mail box blank. Ms. Ring
then types into the large box
In deriving the expression for the phase equilibrium line between gas and liquid,

when evaluating the integral expression

ln p 2/p 1 = \int {T 1}^{T 2} (\Delta H/R) dT/T^2

\Delta H is taken outside the integral. What is the justification for this?

and clicks on the submit button. Ms. Ring’s question is received by the course instructors.
The answer will be sent either to Ms. Ring alone, or preferably to the entire class if the
appropriate box is checked. One of the instructors might reply

Subject: Experiment Number 13 Question

The question is: In deriving the expression for the phase equilibrium line between

gas and liquid, when evaluating the integral expression

ln p 2/p 1 = \int {T 1}^{T 2} (\Delta H/R) dT/T^2

\Delta H is taken outside the integral. What is the justification for this?

The answer is: \Delta H is only weakly dependent on temperature. Then enthalpy

change can be taken outside the integral to a good approximation.

14 The Diffusion of Salt Solutions into Pure Water

When a drop of ink is placed in a beaker of water, the ink is observed to migrate from
the initial location of the ink drop to the remainder of the water. This migration is called
diffusion and continues until the ink concentration is uniform throughout the solution. In
this experiment we study the time dependence of one property of the diffusion process.

Instead of a drop of ink, you use an ionic solution and let it diffuse into pure water
to determine how the ionic concentration gradient depends on time. You begin with a
rectangular cell with the bottom half filled with the salt solution and the top half filled with
water as depicted in Figure 1. As time passes, the salt in the concentrated layer migrates
to regions of low salt concentration. If the salt concentration c is measured as a function
of time t and coordinate x [See Figure 1 for the definition of x], the concentration profile
appears as in Figure 2 [c0 is the initial salt concentration in the salt rich layer]. The two lines
drawn in Figure 2 represent concentration profiles at two different times. Can you tell which
of the two times is earlier? Using Fick’s Law of Diffusion [See Engel and Reid, Sections 17.2
through 17.4], it is possible to show that

∂c

∂x
= Ae−x

2/2σ2(t) (1)

where A is a constant and σ is called the standard deviation. Equation (1) is often called a
Gaussian distribution. A graph of Eq.(1) is shown in Figure 3. The standard deviation σ
is a measure of the width of the distribution. It is possible to show that the area under a
Gaussian between −σ ≤ x ≤ σ comprises ∼68 % of the total area under the Gaussian curve.
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Therefore, if σ is large [the light line in Figure 3], the distribution is wide and if σ is small
[the dark line in Figure 3] the distribution is narrow.

In this experiment you measure σ directly in a diffusion cell as a function of time. You
can be expected to find that

σ = Ktα (2)

where K and α are constants. Relations of the form of Eq. (2) are often called power laws.
You should find that α is particularly simple.

The method you will use to determine the concentration gradient of the solution as a
function of time is based on the refraction of light. When light travels from one medium to
another, the light bends. This bending of light is called refraction. In common experience,
if a spoon is placed in a glass of water, it appears bent because of refraction. The amount
that light is bent is proportional to a property of a medium called the index of refraction
n. In a salt solution, the index of refraction depends on the type of ionic species and the
concentration of the solution. In our cell where there is a concentration gradient, the index
of refraction depends on the coordinate x. Since the index of refraction is proportional to
the concentration, it is easy to see that

∂c

∂x
= K ′

∂n

∂x
(3)

where K ′ is a constant of proportionality. We can then measure the concentration gradient
by measuring the gradient of the index of refraction.

In this experiment the index of refraction gradient is measured by passing a laser light
beam perpendicular to a glass stirring rod that acts as a cylindrical lens. The stirring rod
is set at an angle of about 45 degrees to the horizon. The resulting light image is projected
onto the surface of the diffusion cell. The line is at an angle of approximately 45 degrees
to the horizontal axis of the cell and perpendicular to the direction of the glass rod. If
the line of light is passed through a solution of uniform concentration, the image on the
other side of the diffusion cell, that we project on to a screen, is parallel and longer than the
incoming image. However, if the solution has a concentration gradient, the component of the
incoming light in the x direction deflects by differing amounts depending on the concentration
gradient. The resulting projected image appears as in Figure 4. In Figure 4, the straight line
represents the image that appears in a solution of uniform concentration, and the curved
line represents the image that appears if the solution has a concentration gradient. At any
location along the abscissa, X ′ in the graph is proportional to the coordinate x in the cell
and the difference ∆X ′ is proportional to the concentration gradient. A plot of ∆X ′ as a
function of X ′ then is a Gaussian distribution. The dependence of the standard deviation of
the resulting Gaussian on time is the same as the dependence of the standard deviation in
Eq. (1) on time. Consequently, we can work with the plotted data directly.

14.1 Procedure

1. Make up 2 M solution of the salt given to you. Record in your laboratory notebook
the name of the salt. Be sure to stir the solution thoroughly to completely dissolve the
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salt in water.

2. You begin this experiment by solving a simple riddle qualitatively. Fill a 50 ml beaker
with distilled water and another 50 ml beaker with your salt solution. Imagine that
you have no idea which beaker contains water and which contains the salt solution.
Given only a pipette and pipette bulb, you are to determine which beaker contains the
water and which contains the salt solution.

3. For the main part of this laboratory, the experimental components consist of a low
power helium-neon laser, a cylindrical lens made from a glass rod, a cuvette (diffusion
cell) on a laboratory jack, and a a piece of graph paper that is to be used as a screen.
The glass rod, the cuvette and the screen are mounted perpendicular to the laser
beam as shown in Figure 5. To scan several depths in the cuvette simultaneously,
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the beam of light from the laser is fanned through the glass stirring rod mounted at
about 45 degrees to the horizontal. The rod is placed so that its edge is a distance of
approximately 40 cm. from the center of the cuvette. The cuvette is mounted on a
laboratory jack to facilitate vertical positioning. The graph paper screen is placed on
the wall at the end of the lab bench.

4. Fill the cell halfway with the salt solution.

5. Raise or lower the cell until the laser hits the meniscus. A vertical line will appear on
the screen. Trace this line.

6. Slide the ring stand with the glass rod attached back so that the rod is between the
cuvette and the laser making a line at a 45 degree angle. Trace the diagonal laser line
on the graph paper.

7. Add water to the cuvette by using a pipette and a floating cork. Make sure the water
is added slowly and directly on the cork so as not to disturb the interface. This process
should take a few minutes. You should start your stopwatches at the time you begin
to add water to the cuvette.

8. When you have waited sufficient time so that a stable curve appears entirely on your
graph paper, trace the curve on the graph paper and note the time.

9. Trace new lines at 5 minute intervals for 40 minutes.

14.2 Laboratory Report

Your reports should consist of the following parts:

1. A cover page giving the date the experiment was performed, the name of your labora-
tory partner and the title of the experiment;

2. Your procedure signed by your TA;

3. A description of how you solved the riddle at the beginning of the experiment. Be
sure to include a description of the physical principals used to solve the riddle. These
principals, of course, should relate to the rest of the experiment.

4. The raw data [in this case the original graph paper screen signed by your TA];

5. A table of 10 values of X ′ and ∆X ′ calculated from the graph paper for each time;

6. Graphs of ∆X ′ as a function of X ′ for each time;

7. A statement of the precise definition you used for the width w of each graph;

8. A table of w, t, lnw and ln t;
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9. Plot the values of lnw as a function of ln t using the calculated points;

10. Draw a straight line that is your best estimate of the linear relationship between lnw
and ln t;

11. Determine the slope of your graph;

12. Given that the slope is either an integer or a half integer, round off the value of your
slope to the nearest half integer;

13. Express the dependence of the the width as a power law. It is important to recognize
that the width w is proportional to the standard deviation σ of the Gaussian curves.

14. Summary and Discussion: Briefly summarize the experiment and your findings. Include
all key numerical results; e.g. power law. Examine Eq. (17.18) of the CHM 431
textbook, and compare your measured value of α with the power law of the mean
squared displacement in diffusion processes as a function of time.

15 Notes on Error Analysis

15.1 Reading Assignment

Text pages 3-6, 17-22, 26-41.

15.2 Introduction

The study of the analysis of experimental error is an important goal of CHM 335. The
instructors of this course feel error analysis to be sufficiently important that from 30% to
40% of the grade on your later laboratory reports are based on this topic. We encourage you
to learn this topic well as early in the semester as possible. Many aspects of error analysis
are complex, and the lecture together with these course notes and the appropriate sections
of the text book should be helpful. In preparing your reports we encourage you to come to
the instructors for help with error analysis to make sure you understand the key ideas.

To illustrate the importance of the analysis of errors, suppose a surveyor measures the
distance between Kingston and New York City, and reports the distance to be 150. miles.
While stating the distance to be 150 miles might be sufficient for the Auto Club, from the
point of view of the physical sciences the reported distance alone is inadequate. For example,
the surveyor might mean 150 miles ± 1 mile or the surveyor might mean 150 miles ± 100
miles. The first possibility tells us that it should take about 3 hours to drive to New York
while the latter is only a rough order of magnitude estimate. While the auto club probably
assumes something like 150 miles ± 1 mile, anyone in the sciences must provide not only
the result of a measurement, but the extent to which the result is known as well. Starting
with the third experiment when you report an experimental result, you must include both
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the value obtained as well as the error that provides information about how well you know
the result reported.

15.3 Systematic and Random Errors

Experimental errors are often divided into two categories. The first category, usually called
systematic errors, refers to mistakes inherent in a particular apparatus. For example, suppose
we measure the length of the cover of your textbook with a metal ruler. The total length
of the ruler expands and contracts depending on the temperature of the room. The ruler
might be calibrated assuming the temperature is 20◦C, and if the actual room temperature
is 25◦C, the total length of the ruler must be longer than originally measured. Consequently,
any measurement of length at the higher temperature can be expected to give a result that is
too short. It is important to recognize that systematic errors have a definite algebraic sign.
In the case of our expanded ruler, the error is necessarily negative. There is some control
over such systematic errors. For example, if the coefficient of thermal expansion of the ruler
is known, the measured length can be corrected to provide the true length. Associated with
systematic errors is the term accuracy. An apparatus is said to be accurate to the extent
that the systematic errors are minimized.

The second category of error is associated with inherent random fluctuations of any mea-
surement apparatus, and consequently we refer to such errors as random errors. Again, we
can take the measurement of the length of the cover of our textbook as an example. If we
measure the length of the book many times, we can expect to obtain a range of values that
fluctuates about a mean value. The fluctuations come from many sources. For example, you
might not place the bottom of the ruler at exactly the same place for each measurement.
The thermal fluctuations of the atoms in the ruler change its length slightly providing an-
other source. The temperature of the room also fluctuates changing the length of the ruler
in a random way. Such random fluctuations are inherent, and cannot be eliminated. By
hypothesis, we assume the correct result (in the sense of random errors) for some measure-
ment can be obtained from the arithmetic mean of an infinite set of measurements. We
control random errors by increasing the number of measurements. Unlike systematic errors,
random errors have no definite algebraic sign, and we denote the size of random errors with
± notation. We use the term precision to express the magnitude of the random errors. We
call a measurement precise if its random errors are small.

15.4 The Distribution of Random Errors - The Gaussian Distri-
bution

An important theorem in probability theory, called the central limit theorem, states that
random, independent measurements of a quantity (call it x) must be distributed according
to a Gaussian distribution that takes the form

P (x) =
1√

2πσ2
exp

{
−(x− µ)2

2σ2

}
. (4)
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The meaning of the parameters σ and µ are given shortly. Equation (4) is plotted in Figure
6 for the case that µ = 0 and σ = 1. (the broader peak) and µ = 0, σ = 0.5 (the narrower
peak). The probability function P (x) is normalized in the sense that∫ ∞

−∞
dxP (x) = 1 (5)

implying that P (x) is a well-defined probability function. The average of x is given by

〈x〉 =
∫ ∞
−∞

dx x P (x) = µ (6)

so that the point x = µ locates the peak of P (x) and, by symmetry, is also the mean. A
second important integral is

〈x2〉 − 〈x〉2 =
∫ ∞
−∞

dx x2 P (x)− µ2 = σ2. (7)

The parameter σ is often called the standard deviation and is a measure of the width of the
distribution. It is possible to show that∫ σ

−σ
dx P (x) ∼= 0.66 (8)

and ∫ 2σ

−2σ
dx P (x) ∼= 0.95. (9)

Because P (x) represents the distribution of measured values about the mean µ, Eqs. (8) and
(9) imply that the result of any measurement has a 66% chance of occurring in the range
µ± σ and a 95% chance of occurring in the range µ± 2σ.
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15.5 Calculation of Random Errors for a Finite Set of Laboratory
Measurements

The distribution P (x) is exact only for an infinite set of independent measurements. Natu-
rally, in a laboratory we can only generate a finite set of measured data. For a finite set of
measurements presumably distributed according to P (x), we estimate µ and σ. To estimate
σ and µ for a finite set of measurements, we imagine the set of N measured values to be
x1, x2, . . . , xN . The mean is given by the standard expression

µ =
x1 + x2 + . . .+ xN

N
=

1

N

N∑
i=1

xi. (10)

To determine the standard deviation we use

〈x2〉 =
1

N

N∑
i=1

x2
i , (11)

so that

σ2 =
1

N

N∑
i=1

x2
i −

(
1

N

N∑
i=1

xi

)2

. (12)

The standard deviation σ represents a measure of the fluctuations of x from a large set
of measurements. Although σ is of interest, our principle concern is the fluctuations of the
calculated mean. It is not hard to show that the standard deviation of the mean itself σN is
given by

σ2
N =

σ2

N − 1
(13)

(the N − 1 rather than N comes from the loss of one degree of freedom in the estimation of
the mean). We then report our results in the form

x = µ± 2σN . (14)

From the discussion at the end of Section 15.4, there is a 95% probability that the correct
result is in the range given in Eq.(14).
————————————————————————
Exercise: A student measures the mass of an iron nail with a balance and obtains
the following results: 5.500 g, 5.560g, 5.550g, 5.550g and 5.590g. Calculate the result that
the student should report.

Answer: The average mass is found to be 5.550 grams, σ = .02898 grams, and σN = .01449
grams. The reported result should be 5.55 ± .03 grams. Notice the first significant digit in
the error defines the number of significant figures that should be reported for the average.
We don’t use simple first year chemistry rules for significant figures, but rather we use the
computed error to define the number of significant figures to be reported.
————————————————————————
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The answer to the previous exercise requires rounding off to the last significant digit.
The usual rule for rounding off digits is to increase by one digit if the next digit is greater
than 5, do not increase by one digit if the next digit is less than 5, and increase by one digit
if the next digit is 5 and the result of the round off is even. For example 5.56 becomes 5.6,
5.54 becomes 5.5 and 5.55 becomes 5.6. However 5.65 becomes 5.6.

In most cases it is important to repeat a measurement about 10 times to ensure the
generation of proper statistics so that the magnitude of the random errors can be estimated.
With the exception of the third experiment, in CHM 335 there is not adequate time to
perform 10 measurements. Consequently, the size of the random errors for a particular
measurement is estimated. As a rule of thumb the size of the random error for a measurement
is ± 2 in the last reported digit( we assume the ± 2 error to be at the 95% confidence level;
i.e. 2 standard deviations of the mean). For example, when using the analytical balances,
it is possible to read the mass to four decimal places. If a particular sample has a measured
mass of 4.2345 grams, it is safe to assume the mass to be 4.2345 ± .0002 grams. In the case
of volumetric flasks, the size of the random error is printed on the flask below the label of
the total volume of the flask. When using a volumetric flask, it is important to record the
error in the flask volume when recording your data. For volumetric pipettes (so called class
A glassware), the random errors are those given in the following table:

Volume (ml) random error (ml)
1. 0.01
2. 0.01
5. 0.02
10. 0.02
20. 0.03
25. 0.03
50. 0.04
100. 0.06

15.6 Error Propagation

1. Treatment of Systematic Errors

Perhaps the most difficult topic in error analysis is how errors in basic measurements
propagate to a final result. For example the pH of a solution is defined by

pH = − log10[H+] = − ln[H+]/2.3 (15)

(really, the definition of the pH is in terms of activities of the hydrogen ion, but we can
take it to be defined in terms of concentrations for our purposes). If the hydrogen ion
concentration is measured directly with a known statistical error, we now discuss how
to determine the error in the pH. The generic form of this problem can be discussed
in terms of a function f(x, y, z, . . .) where x, y, z, . . . represent fundamental quantities
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measured directly, and f represents the actual physical quantity to be reported. In
our pH example, there is a single fundamental measured quantity x =[H+], and the
function is f(x) = −(1/2.3) lnx.

The total differential of a function provides the mathematics necessary to solve the
problem of error propagation. The total differential plays a central role in the study
of thermodynamics as well, and total differentials are discussed in detail in CHM 431.
As a reminder, the total differential of a function f is defined by

df =

(
∂f

∂x

)
y,z,...

dx+

(
∂f

∂y

)
x,z,...

dy +

(
∂f

∂z

)
x,y,...

dz + . . . (16)

The total differential of f is the infinitesimal change in f that results from the in-
finitesimal changes in its variables expressed as dx, dy, dz, . . .. In the case of errors,
df is the error in f that arises from small errors dx, dy, dz, . . . in each of its variables.
The interpretation of df just provided in terms of errors is valid for systematic errors.
We shall discuss the modifications for random errors in Section 2. We first try the
application of the total differential to our pH example. Using f = pH and x =[H+] we
have

f = −
(

1

2.3

)
lnx (17)

and

df = − dx

2.3 x
. (18)

Then

ε(pH) = − ε([H
+])

2.3[H+]
(19)

where the notation ε(x) denotes the systematic error in the variable x. The error in
the pH is not simply equal to the error in the hydrogen ion concentration itself, but
rather the error in the pH is a function of the error in the hydrogen ion concentration
as well as other variables. The functional form of the expression for the error cannot
be guessed in any simple way, but must be derived from the expression for the total
differential. Because systematic errors have a definite algebraic sign, the systematic
error in the pH carries sign information.

Let us try another example. The density ρ of a substance is defined by

ρ =
m

V
(20)

where m is the mass and V is the volume. For the purpose of this exercise we take the
mass and the volume as the quantities actually measured in a laboratory, and we ask
how the errors in the mass and volume propagate to give the final error in the density.
Writing ρ = ρ(m,V ) The total differential of the density is given by

dρ =

(
∂ρ

∂m

)
V

dm+

(
∂ρ

∂V

)
m

dV (21)
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=
dm

V
− m dV

V 2
. (22)

The expression for the total differential in the density can be simplified by dividing the
left hand side of Eq.(22) by ρ and the right hand side of Eq.(22) by m/V resulting in
the expression

dρ

ρ
=
dm

m
− dV

V
. (23)

The expression for the propagation of systematic errors then takes the form

ε(ρ)

ρ
=
ε(m)

m
− ε(V )

V
. (24)

The right hand side of Eq.(24) contains sign information. A positive systematic error
in the mass results in a positive error in the density whereas a positive systematic error
in the volume results in a negative systematic error in the density. These signs make
sense, because increasing the volume decreases the density (the volume term appears
in the denominator).

In this course we generally assume that there are no systematic errors. We have in-
cluded the analysis of this section to provide the needed mathematics for the treatment
of random errors. In your laboratory reports you should focus on random errors, the
method for which is discussed in the next section.

2. Treatment of Random Errors

In the previous section the expressions for the propagated systematic errors contained
sign information. Unlike systematic errors, random errors contain no signs. It is
possible to show that the expressions for systematic errors become valid for random
errors if each term in the expression derived from the total differential is squared and
averaged so that cross terms are eliminated. The proof of this assertion is beyond the
scope of this course. To make the procedure explicit, consider a function f of two
measured quantities x and y. The total differential of f is given by

df =

(
∂f

∂x

)
y

dx+

(
∂f

∂y

)
x

dy. (25)

As before, we replace the differentials by errors

ε(f) =

(
∂f

∂x

)
y

ε(x) +

(
∂f

∂y

)
x

ε(y). (26)

Equation(26) is just the expression valid for the propagation of a systematic error. We
now square both sides of Eq.(26) and average. By averaging, the cross terms containing
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terms of the form ε(x)ε(y) average to zero because each individual error can have both
positive and negative signs. The final result for the propagated random error is then

ε(f)2 =

(
∂f

∂x

)2

y

ε(x)2 +

(
∂f

∂y

)2

x

ε(y)2. (27)

(We have replaced the symbol ε that represents a systematic error by the symbol ε to
represent a random error.) To apply the procedure to our density example, we can
begin with Eq.(24), square both sides and average to obtain(

ε(ρ)

ρ

)2

=

(
ε(m)

m

)2

+

(
ε(V )

V

)2

. (28)

Note: Students often mistakenly double a propagated error imagining that the prop-
agated error must be at the single standard deviation (66 %) confidence level. In
fact, the error in the fundamental measured quantities should already be expressed as
2 standard deviations of the mean, and the propagated error represents 2 standard
deviations of the mean. No doubling of the propagated error is necessary.

————————————————————————

Exercise: An expression for the vapor pressure of a certain liquid from a particu-
lar experiment takes the form

ln(p2 − p1) =
λ

RT

where p1 and p2 are two measured pressures expressed in unitless form, R is the gas
constant (8.3144 J mol−1K−1), λ is the enthalpy of vaporization, and T is the temper-
ature in degrees Kelvin. Suppose the experiment is used to determine the value of λ,
and the measured data are p2 = 5.53 ± 0.02, p1 = 4.07 ± 0.09, and T = 275.1 ± 0.1K.
Use the data to determine λ, determine the propagated error in λ and express the
result with the appropriate number of significant figures. For simplicity, you should
assume R is an exact constant with no associated error (in fact R is an experimental
number with associated but small random errors).

Answer:

ε(λ) =

√√√√(R ln(p2 − p1))2 ε2(T ) +

(
RT

p2 − p1

)2

ε2(p1) +

(
RT

p2 − p1

)2

ε2(p2)

λ = (9.± 1.)× 102 J mol−1

————————————————————————
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3. Special Useful Expressions for the Propagated Error

In general to determine the expression for a propagated error, the direct calculation
of the total differential is necessary. The previous exercise illustrates the need to
actually determine the total differential. However, there are two special cases that are
so common that is is useful to derive general expressions for future use. The first is a
function that depends only on the sums and differences of its variables. For example
f(x, y, z) = x+ y − z The total differential of f is

df = dx+ dy − dz. (29)

After replacing the differentials by errors and squaring and averaging, the result is

ε(f) =
√
ε(x)2 + ε(y)2 + ε(z)2. (30)

In general the propagated random error for any function of only the sums and differ-
ences of its variables is the square root of the sums of the squares of the errors in its
variables.

The second important case is a generalization of our density example. Suppose f is a
function only of products and quotients of its variables. For example take f = xy/z.
The total differential of f is

df =
y

z
dx+

x

z
dy − xy

z2
dz. (31)

Dividing the left hand side of Eq.(31) by f and the right hand side of Eq.(31) by xy/z,
we obtain

df

f
=
dx

x
+
dy

y
− dz

z
. (32)

We next replace the differentials by errors and square and average to obtain

ε(f) = f

√√√√(ε(x)

x

)2

+

(
ε(y)

y

)2

+

(
ε(z)

z

)2

. (33)

We can interpret Eq.(33) by stating the relative error in f is the square root of the
sum of the squares of the relative errors in each of its variables. This result can be
extended to any number of variables as long as all variables appear as products or
quotients only.

15.7 Errors from a Graphical Analysis of the Data

Frequently the physical result we seek in an experiment is extracted from the slope or the
intercept of a linear graph obtained from a series of data. For example, suppose the goal of
an experiment is to determine a value of the gas constant R from pV T data obtained from
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measurements using one mole of an ideal gas. The value of R can be obtained from the
slope of a graph of the product pV plotted as a function of the temperature T . An example
of such data is shown in Figure 7. In the data shown in Figure 7, the random errors in
the temperature are smaller than the resolution of the graph. The random errors in the pV
product are large and depicted by the vertical bar with the horizontal lines at the head and
foot associated with each data point. For example the first plotted point in Figure 7 is 22.4
±1 l atm. A point is plotted at pV = 22.1 l atm and the vertical bar ranges from 21.1 l atm
to 23.1 l atm. These vertical bars are called error bars. When plotting points containing
random errors, associated with each point must be an error bar. There should be error bars
parallel to both the x and y-axes, but in this example (and most of the experiments in this
course), the error bars for the data plotted on the x-axis are too small to see.

Perhaps the best way to determine the optimal line that connects a set of experimental
points is called linear regression. Linear regression is discussed in your textbooks, but in
CHM 335 we use a simpler method. We draw the best straight line using a visual fit. The
best straight line drawn in this way is depicted as the darkest solid line in Figure 7. From
this best fit line, the slope can be determined. The slope so determined is taken to be the
slope to be reported in your laboratory experiment. For example, the slope of the best-fit
(dark) line in Figure 7 is 0.0814 l atm K−1. We ask that you analyze your data in this way
using graph paper rather than a computer. In the final experiment of the year, the reports
are written in class, and by preparing your graphs using graph paper rather than a computer,
you have the necessary practice for the final laboratory project.

To obtain an estimate of the errors associated with the slope of a graph (or equivalently
the intercept), the plotted error bars are used to obtain extreme values of the possible slope
and intercept. In this course we take the first and last plotted points, and connect the
bottom of the first error bar to the top of the last error bar with a straight line. Similarly,
we connect the top of the first error bar with the bottom of the last error bar with another
straight line. These two lines are depicted in Figure 7 as the two light solid lines. We call
the slope of the light solid line having the largest slope m+ and the slope of the light solid
line having the smallest slope m−. We estimate the error in the slope to be

ε(m) =
1

2
(m+ −m−) (34)

For example, in Figure 7 m+ = 0.0942 l atm K−1, m− = 0.0784 l atm K−1 so that the error
is ε(m)=0.008 l atm K−1. We then report the gas constant to be R = 0.0814± 0.008 l atm
mol−1 K−1. The error estimated in this fashion can often be an over estimate. Consequently
we can take the error calculated in Eq.(34) to represent two standard deviations of the mean;
i.e. at the 95% confidence level.

Although linear regression is capable of providing a more careful estimate of the error
in the slope from a set of data, the method expressed in Eq.(34) is more suitable for the
purposes of CHM 335.

The error in the intercept b is treated analogously.

ε(b) =
1

2
(b+ − b−) (35)
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16 Experiment 9(28)a: The Intrinsic Viscosity of Polyvinyl

Alcohol

16.1 Introduction and Reading Assignments

In this and the next experiment, you use the measurement of the the viscosity of liquids
to illustrate two things. In the first experiment you learn the methods of error analysis.
In the experiment to be performed in the following week, you use viscosity measurements
to discover certain aspects of polymer structure. In the second part you learn the format
of a complete laboratory report as well. Before coming to the laboratory, be sure to read
pages 106 to 115 in your text book as well as pages 3-41 in your text. The latter reading
assignment presents a discussion of error analysis.

16.2 Theory

When one of the instructors for this course was young (we won’t tell you how long ago)
there was a TV commercial for Prell Shampoo. To show how “wonderful” Prell was, the
advertisement showed two beakers, one filled with Prell and the other filled with water. A
pearl was placed at the top of each solution and the rate at which the pearl reached the
bottom of the beakers was demonstrated. The pearl took much longer to reach the bottom
in the beaker containing Prell than in the beaker containing water.

The difference in rate (which for some reason was supposed to show how good Prell is) is
a measure of what we call viscosity. Another way of observing the effect of differing viscosity
is to pass solutions through a pipe or a narrow capillary. The more viscous the solution the
longer it will take for the liquid to pass through the tube. This difference in flow rate is the
basic principle behind the Ostwald viscometer that we shall use in this experiment.

The physical origin of viscosity can be understood by imagining two trains of infinite
length running on parallel frictionless tracks. Suppose the train on the right track is moving
at a higher speed than the train on the left track. Suppose the doors of the trains are
open and the passengers on each train participate in a game where they hop back and forth
between the two trains at some rate. The passengers jump so that on average the number
of people on either train is constant. A person jumping from the fast train to the slow train
transfers momentum from the fast train to the slow train. A person jumping from the slow
train to the fast train transfers negative momentum. This process of momentum transfer
tends to slow the fast train and speed up the slow train. To an observer too far from the
train to see the jumping, the change in speed appears to be a frictional drag between the
two trains.

Now consider a liquid flowing down a pipe. Imagine the fluid flowing down the pipe to
consist of concentric cylindrical layers of decreasing diameter starting at the wall of the pipe
and ending at the axis of the pipe. It turns out that the layer adjacent to the wall of the
pipe has zero speed and the speed increases from the wall to a maximum at the center of
the pipe. Each layer is analogous to the trains described in the preceding paragraph and the
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molecules that jump between the layers (because of Brownian motion) are analogous to the
people jumping between the trains. When we measure the properties of the fluid as it flows
down the pipe, we observe a frictional drag between the layers. This frictional drag is the
viscosity.

The detailed theoretical background for the experiments is given in the reading assign-
ments. It is useful to note that the key equation for the experiment is given as Eq. (3) in
the laboratory text

η

ρ
= Bt (36)

where η is the viscosity, ρ is the solution density, B is a constant of proportionality and t is
the time necessary for a solution to pass through an Ostwald viscometer.

16.3 Experimental Procedure

In this first experiment you limit the measurements to determine the viscosity of the single
solution of polyvinyl alcohol by comparison with the viscosity of water. Set up the experi-
mental apparatus as in Figure 1 on page 320 of your text books. Measure the time it takes
for water to pass between the marks of the viscometer. You should repeat the measurements
for water 10 times. Then perform 10 measurements of the flow time for the polyvinyl alcohol
stock solution. Clean the Ostwald viscosimeter thoroughly with 3 portions of distilled water
after your polyvinyl alcohol runs. Use a rubber bulb to force water through the capillary
tube several times to remove polyvinyl alcohol from the capillary. After the cleaning, repeat
the viscosity measurement of distilled water twice. Record the water run time in your data
sheet before you ask your TA to sign your data sheet. Fill the Ostwald viscosimeter with
distilled water at the end of the laboratory period.

16.4 Laboratory Report

In your report you have only three sections; a calculations section, an error analysis section,
and a section summarizing your results. Tables of the density and viscosity of water needed
for your laboratory reports are found on the last page of this syllabus.

1. Include a cover page giving the title of the experiment and the date the experiment
was performed.

2. Include the signed outline of the experimental procedure.

3. Calculations

(a) Make a table consisting of the ten values of the flow time for the water measure-
ments and the polyvinyl alcohol solution measurements.

(b) Calculate the average flow time for each species.
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(c) Determine the density and viscosity of water using the tables at the end of this
syllabus. As an example, the density of water at 23.1C is 0.997514 g cm−3. The
viscosity of water at 23.C is 9.38 mP.

(d) Use the mean value for water and the known viscosity of water to determine the
apparatus constant B.

(e) Using the determined value of B, calculate the viscosity of the polyvinyl alcohol
solution.

4. Error Analysis

(a) Calculate the standard deviation of the mean of the flow time for water.

(b) Calculate the standard deviation of the mean of the flow time for the polyvinyl
alcohol solution.

(c) Propagate errors to determine the error in B.

(d) Propagate errors to determine the error in the viscosity of the polyvinyl alcohol
solution.

5. Summarize your measured results including the calculated errors. Be sure to include
the proper number of significant figures and the proper units.

6. Remember to attach your original data signed by your TA.

Because you need additional experience in error propagation before attempting the next
laboratory experiment, do the following exercises as the final section of your laboratory
reports:

1. A student has a sodium chloride solution having concentration 1.03 ± 0.02 molar. 50.0
±0.1 ml of the solution are placed in a volumetric flask of volume 100.0 ± 0.2 ml,
and the solution is mixed with water to the mark on the flask. Determine the final
concentration along with its associated random error.

2. The final solution from problem 1 is again diluted in half with water using a pipette
and volumetric flask with the same specifications. Determine this final concentration
with the associated random error.

3. Later in the semester, you will determine a quantity γ using pressure measurements
having the form

γ =

P2

P1

− 1

P3

P1

− 1
.

Suppose the measured pressures are P1 = 32.0 ± 0.2 torr, P2 = 43.2 ± 0.3 torr and
P3 = 762. ± 1 torr. Calculate γ and the associated random error. Be careful. In this
problem, taking the total differential is essential.
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4. In the same experiment later this semester, you will determine a related expression for
γ given by

γ =
ln
P2

P1

ln
P3

P1

.

Using the same data as in the previous problem, determine γ and the associated random
error.

17 Experiment 9(28)b: The Intrinsic Viscosity of Polyvinyl

Alcohol

17.1 Introduction

In this follow-up experiment, you use the viscosity measurements to determine the fraction
of polymer units that are connected in the so-called “head to head” arrangement. The
approach is to use a reagent that cleaves the head to head connections exclusively. The
cleavage increases the number of molecules in solution and decreases the average molecular
weight. This change is related to the viscosity. The experimental procedure that you use
is identical to that given in the text book. The next subsection will contain a discussion of
some of the theoretical ideas.

17.2 Theory

We define ∆ to be the fraction of bonds connecting monomer units in a strand of polyvinyl
alcohol that are connected “head to head.” Let W be the total mass of polyvinyl alcohol in
the solution. The total number of monomer units, N0, is equal to W divided by M0 where
M0 is the molecular weight of a monomer; i.e.

N0 = W/M0 (37)

Let Nn be the total number of polymer molecules in the solution before cleavage and N ′n
be the total number of polymer molecules in solution after cleavage. If Mn is the molecular
weight of the polymer and M ′

n is the polymer molecular weight after cleavage, then

Nn = W/Mn (38)

and
N ′n = W/M ′

n. (39)

Assuming the molecular weights of the polymers are high, to a vanishingly small error we
can then write

∆ =
N ′n −Nn

N0

(40)
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=
1/M ′

n − 1/Mn

1/M0

(41)

We can then determine ∆ from a knowledge of the molecular weights.
We determine the molecular weights using changes in the viscosity that accompany the

cleavage process. In a polymer the viscosity increases with increasing molecular weight. The
principal reason is that the average volume of the polymer molecules in solution increases
with chain length. The quantitative dependence on the molecular weight can be understood
by viewing the polymer in a spherical model as discussed in the text book. The final result
is found in Eq. (7) on page 323. Since the solution consists of a statistical ensemble, the
molecular weights used are averages resulting in additional correction factors as given in Eq.
(11) on page 324 of the text.

Please note that the second of the two equations listed as Eq. (7) on page 323 of the text
is in error. You should use

M = 7.4× 104[η]1.32.

17.3 Cleaning Procedure

As with the first part of this experiment, clean the Ostwald viscosimeter thoroughly with
3 portions of distilled water after your polyvinyl alcohol runs. Use a rubber bulb to force
water through the capillary tube several times to remove polyvinyl alcohol from the capillary.
After the cleaning, repeat the viscosity measurement of distilled water twice. Record the
water run time in your data sheet before you ask your TA to sign your data sheet. Fill the
Ostwald viscosimeter with distilled water at the end of the laboratory period.

17.4 Laboratory Report

You write complete laboratory reports for this experiment. Before writing your reports, be
sure to read pages 10 to 25 in your text books. Your reports should contain the following
sections:

1. Title Page: Give the title of the experiment and the date the experiment was performed.

2. Abstract: This should be a 1 paragraph summary of what is to follow including the
results. It is suggested that you write the abstract after the rest of the report is
complete.

3. Introduction: This should be a discussion of the purpose of the experiment.

4. Theory: This should provide a derivation of the key formulas used in the experiment
and used in the analysis of the data. Make sure that all symbols used in this section
are defined in words.

5. Procedure: Attach the outline of the procedure you brought to class and had signed
by your TA.
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6. Original Data: Attach the original data signed by your TA.

7. Results: Tabulate your data so that it can be used in the calculations to follow.

8. Calculations: Provide a sample calculation taking one from the original data to the
final result.

9. Error Analysis: Use the standard deviations computed in last weeks experiment as an
estimate of the error in the flow times. Determine the error in the specific viscosity by
propagation.

10. Graphical Analysis: Plot the specific viscosity divided by the concentration as a func-
tion of concentration. Draw the best line through the data. Include error bars on the
data points. Use the limiting slope method to determine the intercept and the error
in the intercept.

11. Final Calculation: Determine the best average molecular weights for both the cleaved
and uncleaved samples. Then calculate ∆. It is possible to determine the error in ∆
and the average molecular weight by error propagation. However, we do not expect
you do determine these errors in this laboratory report.

12. Summary of Data: Summarize the final results. In particular include the average
intrinsic viscosity, the average molecular weight and the best estimate of ∆. Be sure
to include the errors for the intrinsic viscosity when reporting your final results, and
be sure to report only the proper number of significant figures.

13. Conclusions: Discuss the significance of your results. Be sure to discuss the frequency
of the head to head connections and discuss the principal sources of error. Make
suggestions for how the experiment might be improved.

18 Format of Laboratory Reports for Remaining Ex-

periments

The laboratory reports for the remaining experiments should all have the same format. Each
report should have the following sections:

1. Title Page: Give the title of the experiment, the date the experiment was performed
and the name of your laboratory partner (if any).

2. Abstract: This should be a 1 paragraph summary of what is to follow including the
results. It is suggested that you write the abstract after the rest of the report is
complete.

3. Introduction: This should be a discussion of the purpose of the experiment.
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4. Theory: This should provide a derivation of the key formulas used in the experiment
and in the analysis of the data. Definitions must be provided for all symbols used in
this and subsequent sections.

5. Procedure: Attach the outline of the procedure you brought to class and had signed
by your TA.

6. Original Data: Attach the original data signed by your TA.

7. Data Table: Tabulate your data so that it can be used in the calculations to follow.

8. Calculations: Provide a sample calculation taking one from the original data to the
final results.

9. Graphical Analysis: If required, plot your data on a graph. Draw the best line through
the data. Determine the slope and/or intercept of the graph as needed.

10. Error Analysis: Perform any necessary propagation of errors. You need show only one
example of any one kind of propagation.

11. If a graph is needed use the calculated errors to include error bars on the graph. Use
the limiting slope method to determine the error in the slope and/or intercept.

12. Propagate the errors from the graph to give the errors in the final results.

13. Summary of Data: Summarize the final result with error bars included. Be sure to
report only the proper number of significant figures.

14. Conclusions: Discuss the significance of your results. Make suggestions for how the
experiment might be improved.

19 Experiment 7(13) - The Vapor Pressure of a Pure

Liquid

19.1 Reading Assignment

Read experiment number 7(13), pages 85-93 in the text.

19.2 Experimental Notes

1. The boiling point method is used. Follow the procedure in the book.

2. Our experimental design uses an open ended electronic manometer. Readings from an
open ended manometer gives the pressure relative to the atmospheric pressure. The
atmospheric pressure must be obtained by reading the electronic barometer.
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3. No baffle is used.

4. We use the internal vacuum line (colored orange in our building) for the vacuum pump.

5. Glassware under vacuum is dangerous if broken. Avoid tampering with the connec-
tions when the system is evacuated. Wear goggles at all times. The evacuated
glassware can implode!

6. Fill the boiling flask about 1/3 full with distilled water and fresh boiling chips. This
will be used for the entire experiment.

7. When the thermometer is correctly positioned, the bottom of the bulb is even with the
top of the boiling flask.

8. The condenser must be run during the experiment.

9. With the water aspirator, evacuate the system until the lowest pressure is reached
(∼60-80 torr). Then, close the stopcock on the trap.

10. Check for leaks by observing the manometer for 5 minutes after reaching the lowest
pressure and closing the system. The system is leaking if the pressure changes by
more than 1 or 2 torr in the five minute period. If the system is leaking, increase
the pressure by opening the stopcock in the connection between the ballast and the
trap. Then check all joints. The joints should be clean, greased and tight. Recheck
the system for leaks by evacuating the system to lowest pressure again.

11. When the system is free of leaks, begin the heating process. Set the variastat at ∼60-80
and heat rapidly until boiling. Then lower the variastat to ∼30 to attain a gentle but
steady boil.

12. Begin with the ascending cycle first. Take 10 readings spaced approximately as shown
in the book. Then descend taking another 10 readings. Repeat this process one
additional time. The aspirator should be off during the ascending cycle.

13. At each pressure allow the system to equilibrate. Take pressure/temperature readings
simultaneously every 30 seconds. When three readings in a row are the same, the
system has reached equilibrium.

14. After the completion of the experiment, release the vacuum, shut off the water to the
condenser, empty the trap and wash the boiling flask. Do not put boiling chips in the
drain. Dispose of the boiling chips in the trash.
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19.3 Laboratory Report

1. Error Analysis:

(a) Estimate the error bars for only the first and last points of the graph used to
determine the enthalpy of vaporization.

(b) Estimate the error in the slope using the limiting slope method.

(c) Estimate the error in Z by visual inspection of Figure 1 in the textbook.

(d) Propagate the errors to obtain an error in ∆Hv.

2. Conclusions: Compare your result with literature values. Use your experimentally
derived enthalpy of vaporization to calculate the entropy of vaporization. Compare
your result with Trouton’s Rule [Engel and Reid, p. 194] and explain the differences.

20 Experiment 6(11) - Freezing-point Depression of

Strong and Weak Electrolytes

20.1 Reading Assignment

Experiment 11, Pages 79-84(188-193,) Text.

20.2 Experimental Notes

1. We will only perform measurements on chloroacetic acid. The part of this experiment
on hydrochloric acid can be ignored.

2. Follow the textbook instructions using the order of tasks given here.

3. Make sure that the stock solutions and a container of deionized water are in ice baths.
If not, talk to your TA.

4. We will use a digital thermometer precise to ± 0.01 C.

5. Add about 300 mL of deionized water to the Dewar along with about 100 mL of ice.
It is important that the level of liquid in the Dewar cover the bottom third of the
thermometer. Let the ice water stand for 5 minutes.

6. Use an analytical balance to determine the mass of the clean and dry weighing bottle.

7. Vigorously stir the ice water in the Dewar with the supplied stainless-steel stirrer for 5
minutes. Record the temperature of the ice water once per minute. The temperature
should be a steady 0.00 ± 0.01 C. If the temperature is not steady, speak to your TA.
Record the temperature when steady.
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8. Empty the Dewar and add about 300 mL of the 0.25 M chloroacetic acid solution to the
Dewar. Again add about 100 mL of ice, and begin to stir the mixture vigorously. After
5 minutes of mixing, begin to record the temperature once per minute for 5 minutes.
When the temperature is steady for 5 minutes, record the temperature.

9. Without delay withdraw about 10 mL of the chloroacetic acid solution and add to the
empty and clean weighing bottle. Put the weighing bottle aside, and let the bottle
equilibrate to room temperature for at least 45 minutes. If the weighing bottle is not
at room temperature, moisture will condense on the outside of the bottle affecting the
weight.

10. Determine the mass of a second clean and dry weighing bottle.

11. Empty and clean the Dewar. Dilute 150 mL the chloroacetic acid solution to approxi-
mately 0.125 M (a total volume of 300 mL). Add the diluted chloroacetic acid solution
to the Dewar, and repeat steps 8 and 9.

12. Determine the mass of the weighing bottle containing the first solution. Empty the
solution in the weighing bottle into the provided flask. Rinse the weighing bottle with
deionized water several times emptying the waste into the flask.

13. Titrate the solution in the flask with the standardized sodium hydroxide solution.
Remember to record the initial and final volumes of the sodium hydroxide level in the
burette as well as the concentration of the stock solution.

14. Determine the mass of the second weighing bottle containing the dilute chloroacetic
acid solution. Repeat step 13 for the dilute solution.

20.3 Calculations

1. Calculate the molality of all solutions. Recall that molality is the moles of solute
per kg of solvent. The moles of solute are determined from the titration part of the
experiment, and the mass of water is determined by subtracting the mass of solute
from the total mass of the solution.

2. Calculate the degree of dissociation (i.e. the fraction dissociated) α for chloroacetic acid
at both concentrations using Eqs. (1) and (2) on page 188 of the textbook. Calculate
the equilibrium constant at both concentrations.

3. Calculate g1 for chloroacetic acid and compare with the value of g1 for an ideal nonionic
solution.
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20.4 Error Analysis

1. Use error propagation to determine the errors in the degree of dissociation and the
equilibrium constant for chloroacetic acid. You should assume the error in each tem-
perature measurement is ±0.01 C, the error in each mass measurement is ±0.0002 g
and the errors in the volumes recorded from the burette are ±0.05 mL. Remember to
use the addition/subtraction formula to propagate errors for all differences.

20.5 Discussion

1. For chloroacetic acid do the computed equilibrium constants obtained at the two con-
centrations agree within experimental error?

2. Use the equilibrium constant of chloroacetic acid determined at the highest concen-
tration to calculate the degree of dissociation expected at the lower concentration.
Does your computed value agree with your measured degree of dissociation to within
experimental error?

3. Calculate the pKa of chloroacetic acid (along with the error in the pKa) at both
concentrations. Compare with literature values, and discuss any differences you find
outside your computed errors.

21 Experiment 6 - The Heat of Combustion of Organic

Compounds

21.1 Reading Assignment

Experiment 3(6), Pages 65-71, Text.

21.2 Experimental Notes

1. Follow the instructions in the textbook for the Parr instrument.

2. Our pressure gauge is calibrated in atmospheres. You must convert psi to atmospheres
as discussed in the textbook.

3. You will determine the enthalpy of combustion for the compound assigned to you by
your TA in class.

21.3 Error Analysis

In determining the error in the enthalpy of combustion of your compound, include contri-
butions only from a) the mass of the iron wire used, b) the mass of the sample used, c)
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the energies of combustion given in the text [± 2 in the last significant figure] and d) the
temperature change. It will be necessary to determine the error in the heat capacity of the
calorimeter from your first measurement, and then use this error by propagation to deter-
mine the error in the final molar enthalpy of combustion. You may ignore any errors from
the volume of water used in filling the calorimeter, and you may ignore any errors in the de-
termination of the time of measurement. These errors are so small that they are insignificant
for our purposes.

22 Experiment Number 3(3) - Heat Capacity Ratio of

Gases

22.1 Reading Assignment

Read experiment number 3(3), pages 51-59 in the text. The discussion that follows is some-
what different and more complete than the discussion in the textbook.

22.2 Theoretical Discussion

To determine the ratio γ = Cp/CV , a carboy is filled with some gas at an initial pressure p1,
and initial temperature T1 and an initial volume V1. The initial pressure is generally about
60mm in excess of the external atmospheric pressure. After an equilibration period where
the initial pressure is found to be unchanged for several minutes, the stopper at the top of
the carboy is removed for about 1 second and replaced. It is assumed the rapidity that the
stopper is removed and replaced allows the gas to expand adiabatically against the external
atmospheric pressure p2 to an intermediate volume V2 and a temperature T2. Because the
expansion is adiabatic, we know that T2 < T1. Finally, the gas heats at constant volume to
the initial temperature T1 so that the final pressure is p3. The experimental data consist of
the pressures p1, p2 and p3.

• Assumption of Reversibility: According to the textbook, the adiabatic expansion can
be viewed as reversible. Assuming reversibility the determination of γ follows from the
standard expressions for the adiabatic expansion of an ideal gas. Because the expansion
is adiabatic and assumed reversible, we have

dU = −pdV = −nRT
V

dV. (42)

For an ideal gas
dU = CV dT (43)

so that
−nRd lnV = CV d lnT. (44)

42



Then for the first step in the process

−nR ln
V2

V1

= CV ln
T2

T1

. (45)

Using the ideal gas law we have
p2V2

T2

=
p1V1

T1

(46)

so that
T2

T1

=
p2V2

p1V1

. (47)

Then

−nR ln
V2

V1

= CV ln
p2V2

p1V1

= CV ln
p2

p1

+ CV ln
V2

V1

. (48)

Using the ideal gas relation
Cp = CV + nR (49)

we then obtain

−Cp ln
V2

V1

= CV ln
p2

p1

. (50)

In the second step of the process we heat the gas at constant volume to a final state
defined by the variables p3, V2 and T1. For this constant volume process the ideal gas
law along with Eq. (47) give

T2

T1

=
p2V2

p1V1

=
p2

p3

(51)

so that
V2

V1

=

(
p1

p2

)(
p2

p3

)
=
p1

p3

. (52)

Then
−Cp ln

p1

p3

= CV ln
p2

p1

(53)

or

γ =
Cp
CV

=
ln(p1/p2)

ln(p1/p3)
. (54)

• Irreversible Adiabatic Expansion: We now (perhaps more realistically) assume that
the adiabatic expansion is an irreversible expansion of the gas against the constant
external atmospheric pressure p2. Equating the irreversible work to the energy change
for an ideal gas, we obtain

CV (T2 − T1) = −p2(V2 − V1) (55)

= −p2

(
nRT2

p2

− nRT1

p1

)
(56)
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= −nR
(
T2 − T1

p2

p1

)
(57)

or

CV

(
T2

T1

− 1
)

= −nR
(
T2

T1

− p2

p1

)
. (58)

Using Eq. (47)

CV

(
p2V2

p1V1

− 1

)
= −nR

(
p2V2

p1V1

− p2

p1

)
. (59)

The second step in the irreversible process is the same as the reversible case, and we
can again use Eq.(52) to obtain

CV

(
p2p1

p1p3

− 1

)
= −nR

(
p2p1

p1p3

− p2

p1

)
(60)

or from Eq.(49)

CV

(
p2

p3

− 1

)
= −(Cp − CV )

(
p2

p3

− p2

p1

)
(61)

or

−(γ − 1)

(
p2

p3

− p2

p1

)
=

(
p2

p3

− 1

)
. (62)

After rearranging Eq. (62) and solving for γ we obtain the final result

γ =
p1/p2 − 1

p1/p3 − 1
. (63)

We can obtain Eq. (63) by expanding the numerator and denominator of Eq.(54) for
small values of the argument. If we write

f(x) = ln x (64)

and expand f in a Taylor series about x = 1, we obtain

f(x) = f(1) + (x− 1)f ′(1) +
1

2
(x− 1)2f ′′(1) + . . . (65)

or
lnx = (x− 1) + . . . (66)

Then for (p1/p2−1) < 1 and (p1/p3−1) < 1 to leading order Eq.(54) becomes Eq.(63).

• Correct derivation allowing the escape of some of the gas: Let us now carefully derive
Eq.(63). The steps in the process are:

1. an adiabatic irreversible expansion of the ideal gas from the state n1, p1, T1 and
V1 against a constant external pressure p2 to the final state n1, p2, T2 and V2;
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2. use of the initial volume of the container so that the state of the system is rep-
resented by n2, p2, V1 and T2 - in this step some of the gas originally present is
allowed to escape into the atmosphere;

3. constant volume heating to the initial temperature represented by the final state
n2, V1, p3 and T1.

We let CV and Cp be the constant volume and constant pressure heat capacities per
mole. Then for step 1

n1CV (T2 − T1) = −p2

(
n1RT2

p2

− n1RT1

p1

)
(67)

= −n1RT2 + n1RT1
p2

p1

. (68)

Solving for T2 we obtain

n1(R + CV )T2 = n1RT1
p2

p1

+ n1CV T1 (69)

or
CpT2 = RT1

p2

p1

+ CV T1 (70)

so that

T2 =
R

Cp
T1
p2

p1

+
CV
Cp

T1 (71)

=
Cp − Cv
Cp

T1
p2

p1

+
CV
Cp

T1 (72)

=

(
1− 1

γ

)
T1
p2

p1

+
1

γ
T1 (73)

=
T1

γ

[
(γ − 1)

p2

p1

+ 1

]
. (74)

In the second step, we remove n1 − n2 moles of gas from our system. The expression
for n2 is

n2 =
p2V1

RT2

(75)

=
p2V1

R

γ

T1

[
(γ − 1)

p2

p1

+ 1

] . (76)

In step 3, the gas remaining in the initial volume is heated to temperature T1 so that
its final pressure is p3. Solving for p3

p3 =
n2RT1

V1

(77)
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=
(
RT1

V1

)(
p2V1

R

)(
γ/

{
T1

[
(γ − 1)

p2

p1

+ 1

]})
(78)

or
p3 =

p2γ

(γ − 1)
p2

p1

+ 1
. (79)

We next rearrange Eq.(79)

(γ − 1)
p2

p1

+ 1 = γ
p2

p3

(80)

and solve for γ

γ

(
p2

p1

− p2

p3

)
=
p2

p1

− 1 (81)

or

γ =
p1/p2 − 1

p1/p3 − 1
(82)

in complete agreement with Eq.(63).

22.3 Experimental Notes

1. The adiabatic expansion method is used. Follow the procedure outlined in the text.

2. Our experimental design uses an electronic open ended manometer. Readings from an
open ended manometer gives the pressure relative to the atmospheric pressure. The
atmospheric pressure must be obtained by reading the electronic barometer. Ask your
TA for instructions.

22.4 Laboratory Report

1. Theory Section:

(a) Be sure to discuss the difference between the assumption of a reversible adiabatic
expansion and an irreversible expansion against a constant external pressure. Ex-
plain which assumption is closest to the actual experimental situation.

2. Calculations:

(a) Calculate γ using both Eqs. (54) and (63).

3. Error Analysis:

(a) Assume an error of ± 2 in the last recorded figure from the electronic manometer
and the electronic barometer.
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∆xΣ

liquid

vapor

Figure 7: A representation of a container with a liquid mixture in equilibrium with a vapor
phase. The section labelled ∆x represents the surface region where the concentrations of
both solvent and solute are not uniform. The horizontal line drawn at Σ represents the plane
surface that defines the two-dimensional surface associated with the surface properties of the
system.

(b) Although the reported values of γ are obtained by an average of the heat capacity
ration for three trials, choose only 1 of the 3 trials for each gas to propagate the
error in γ. Make sure to indicate carefully which of the three trials (for each gas)
is used in your error propagation calculation. Carefully propagate errors in the
pressure, the pressure ratios, the logarithms and the final ratios to obtain the
propagated error in the heat capacity ratio. Compute expressions and values for
the statistical error in γ from both Eqs. (54) and (63).

4. Conclusions:

(a) Compare γ ± ε(γ) using both the assumption of reversibility and irreversible adi-
abatic expansions. Do the two values determined lie within their respective sta-
tistical errors?

(b) Compare γ±ε(γ) with the theoretical values expected for an ideal monatomic and
diatomic gas. Do the theoretical results lie within your calculated experimental
errors? If the results lie outside the experimental errors, discuss possible reasons
for the lack of agreement.

23 Experiment 8(25) - Surface Tension of Solutions

subsectionReading Assignment
Textbook, Experiment number 8(25), pages 95-104.

23.1 Theory

1. Description of the system: We consider a system in a container consisting of a solute
dissolved in a liquid solvent so that the solute has bulk concentration cs, and we also
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consider the situation where the solution has a surface of area σ. We take the surface
to be in contact with a vapor phase (see Fig. 7). We assume the external temperature
T and pressure P are fixed. While the solute has uniform density throughout most of
the liquid phase, there is a small volume in the vicinity of the surface (represented by
∆x in Fig. 7) where the solute and solvent concentrations decay to their vapor-phase
concentrations. The concentration in the vapor phase is sufficiently low compared to
the liquid phase that we can neglect further consideration of the contribution from
the vapor phase to the surface properties. Figure 8 is a representation of the solute
and solvent concentrations as a function of distance roughly within ∆x. The x axis of
Fig. 8 represents the vertical distance such that negative coordinates that are large in
magnitude are locations within the bulk liquid, and large positive values of x(i.e. > 10)
are in the vapor phase. The actual numerical values of x in the figure have no real
meaning. The y axis of Fig. 8 gives the concentrations in arbitrary units for both the
solvent and solute as marked. In Fig. 8 the bulk solute concentration is taken to be half
of the solvent concentration, but the exact difference is unimportant for the current
discussion. Of course we do require the solvent to have a greater bulk concentration
than the solute. In the vicinity of the surface the solvent concentration decreases from
its bulk value and the solute concentration increases. At x = 10 (arbitrary units) both
the solute and solvent concentrations rapidly decay to their vapor phase values. In
this experiment where we study a mixture of water (solvent) and butanol (solute), we
have this behavior, which decreases the overall surface tension of the system. For other
systems, like NaCl in water the solute concentration decreases near the surface and the
solvent concentration increases.

2. Definition of the dividing surface: We next need to define a dividing surface that
provides a sensible and useful meaning to the notion of the surface concentrations of
solute and solvent in the region represented by ∆x in Fig. 7. Shortly, we define the
excess surface concentration of solute and solvent, and the units of the excess surface
concentration are moles per unit area. The units imply that we can think of the solute
and solvent molecules in ∆x as residing on a two-dimensional planar surface, and we
need to define our concepts so that the resulting definitions both give some physical
insight and simultaneously are consistent with the number of moles of each species
in the volume defined by ∆x. The resulting definitions are physically artificial but
mathematically consistent.

We draw a plane dividing surface within ∆x, which we label Σ, and we choose the
location of Σ so that the excess number of moles of solvent on each side of Σ is 0. To
understand the notion of the excess number of surface moles of solvent, we let cS be the
bulk solvent concentration assumed to be uniform from the bottom of the container
to the constructed surface at Σ. We let cS be the actual surface concentration that
is uniform from the bottom of the container until we reach ∆x and decays in ∆x as
we approach the vapor phase. The behavior of cS is depicted in Fig. 8. The excess
number of moles of solvent is defined to be the difference between the deficit in the
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Figure 8: The concentration of the solvent and solute as a function of vertical distance (see
Fig. 7) in the region ∆x. The vertical line at Σ represents the constructed dividing surface.
The horizontal lines at y = 1 and 2 (arbitrary units) correspond to the bulk solute and
solvent concentrations respectively. The boundary at x = 10 (arbitrary units) is the end of
the boundary region and corresponds to the interface between liquid and vapor.

number of moles of solvent obtained from cS compared to cS below and above Σ. To
make the concept clearer, we define the volume of the liquid phase, V` to be the volume
of solution from Σ to the bottom of the container. Then the excess number of moles
of solvent, nΣ

S is defined to be

nΣ
S = cSV` − σ

∫ Σ

−b
cSdx− σ

∫ ∞
Σ

cSdx (83)

where −b is the coordinate at the bottom of the container. We choose the location of
Σ so that nΣ

S = 0. This choice of the location of Σ implies

cSV` = σ
∫ ∞
−b

cSdx; (84)

i.e. the total number of moles of solvent obtained by integrating the actual concentra-
tion profile over the entire system is identical to the number of moles that would be
obtained if a uniform concentration existed up to the surface defined by Σ.

We define the excess number of moles of solute in the same manner used to define the
solvent. Letting cs be the bulk solute concentration assumed to be uniform throughout
the solution and cs be the actual solute concentration, we write for the excess number
of moles of solute

nΣ
s = csV` − σ

∫ Σ

−b
csdx− σ

∫ ∞
Σ

csdx. (85)

49



While we have defined Σ so that nΣ
S = 0 by construction, in general the different

concentration profile for the solute implies that nΣ
s cannot generally vanish.

As discussed above, we now associate (i.e. pretend) that all the excess number of moles
of solute nΣ

s are confined to a two-dimensional layer at Σ. We then define the excess
surface concentrations of both the solute and solvent by

Γs =
nΣ
s

σ
(86)

and

ΓS =
nΣ
S

σ
. (87)

By construction ΓS = 0, and our goal is to measure Γs assuming all the excess number
of moles of solute reside on the surface Σ. The measurement is possible by using the
Gibbs isotherm.

Before deriving the Gibbs isotherm it is useful to understand the notion of excess sur-
face concentration with some definite physical models. We consider the case where
∆x consists only of a single layer of solute molecules adsorbed onto a solvent. Such
films are called monolayers, and an example of such a system is oleic acid adsorbed on
water. In such a case we place Σ just at the interface between the solvent and solute.
Clearly, the excess surface concentration of solvent is 0, because the solvent molecules
are completely absent from the monolayer. The resulting solute excess surface con-
centration is just the number of moles of solute in the monolayer per unit area. We
see that our definition of excess surface concentration of solute is consistent with our
expectations for a monolayer. In another limit we consider the case that solute and
solvent are very similar (e.g. two completely miscible alcohols). In such a case Γs can
be expected to be very small; i.e. very little solute needs to be associated with our
artificial surface layer, because the concentration profiles of both solute and solvent in
∆x have nearly the same functional form.

In the intermediate case between the two extremes outlined in the previous paragraph,
the excess number of moles of solute can either be enhanced or diminished compared
to csV`. Work is required to form the surface owing to the breaking of bonds at the
interface (e.g. the hydrogen bonds for liquid water), and solutes having weaker bonds
than the solvent tend to have positive excess surface concentrations(e.g. butanol).
Using similar reasoning solutes having stronger bonds than the solvent tend to have
negative excess surface concentrations(e.g. sodium chloride).

3. The Gibbs Isotherm: We let Gv be the Gibbs free energy of the vapor phase, G` be the
Gibbs free energy of the liquid phase and GΣ be the Gibbs free energy of the surface
phase. We allow all three phases to contain both solvent and solute. We can write for
the total differential of the entire Gibbs free energy function

dG = dGv + dG` + dGΣ. (88)
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In each phase G is a function of T, P and the number of moles of both the solvent and
solute. Additionally, GΣ depends on the surface area σ. We can then write (at fixed
temperature and pressure)

dG = µsdnv,s + µSdnv,S + µsdn`,s + µSdn`,S + µsdnΣ,s + µSdnΣ,S + γdσ. (89)

where nv,s represents the number of moles of solute in the vapor, nv,S represents the
number of moles of solvent in the vapor, n`,s represents the number of moles of solute in
the liquid, n`,S represents the number of moles of solvent in the liquid, nΣ,s represents
the number of moles of solute associated with the surface region, nΣ,S represents the
number of moles of solvent associated with the surface region, and γ is the reversible
work per unit area to form the surface; i.e. the surface tension. In the vapor and liquid
phases alone, we know that

dGv = µsdnv,s + µSdnv,S (90)

and
dG` = µsdn`,s + µSdn`,S (91)

so that Eq. (89) becomes

dGΣ = µsdnΣ,s + µSdnΣ,S + γdσ. (92)

Because the number of moles of each species and the surface area are all extensive
variables with the chemical potentials and the surface tension intensive variables, by
Euler’s theorem on homogeneous functions we can write

GΣ = µsnΣ,s + µSnΣ,S + γσ. (93)

After taking the total differential of Eq. (93) and subtracting Eq. (92), the result is a
Gibbs-Duhem relation

−σdγ = nΣ,sdµs + nΣ,SdµS. (94)

or solving for the differential of the surface tension

−dγ = Γsdµs + ΓSdµS (95)

where we have recognized the excess surface concentrations as the number of moles of
solute or solvent per unit area. As noted previously ΓS = 0 by construction, and we
know that

µs = µ◦ +RT ln as (96)

where as is the activity of the solute defined so that the form of the chemical potential
matches the ideal gas form. We can also write the activity in terms of the solute
concentration

as = csφs (97)
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where φs is called the activity coefficient. The activity coefficient can be shown to
approach unity as the concentration of solute becomes low. Taking the differential of
the chemical potential

dµs = RTd ln as (98)

and substituting the differential into Eq. (95), we obtain

−dγs = RT Γs d ln a (99)

or

Γs = − 1

RT

dγ

d ln as
, (100)

which is the Gibbs isotherm. The excess solute surface concentration Γs depends on
the slope of the surface tension with solute activity, and to the extent that the relation
between the surface tension and the logarithm of the activity is linear, we can assume
the excess solute concentration is independent of total concentration. Consequently,
the Gibbs isotherm can provide a single excess solute surface concentration for all
total solution concentrations. The location of the dividing surface Σ does vary with
concentration, but the location of Σ is not important to the overall interpretation.

In the textbook Eq. (100) is approximated by replacing the activity with the concen-
tration; i.e. setting φ = 1. Equation (100) enables the determination of the excess
surface concentration of solute by measuring the surface tension as a function of con-
centration. We determine the excess surface concentration of solute in this manner in
the current experiment.

23.2 Experimental Notes

1. We use the capillary rise method discussed in the textbook.

2. You make solutions of either n-butanol, iso-butanol, sec-butanol or tert-butanol. Ask
your TA to assign the particular alcohol.

3. You are not to perform the NaCl experiment.

4. The approximately 0.8 M butanol stock solution will be provided. You are to use
volumetric methods to prepare the other solutions.

5. Be sure to record the temperature of the bath.

6. The surface tension of distilled water as a function of temperature is given in the Table
below. To determine the surface tension at your working temperature, you must use
interpolation methods.
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Temperature (◦C) surface tension of water (dy cm−1)
10. 74.23
20. 72.75
25. 72.00
30. 71.20

23.3 Laboratory Report

The laboratory report format is as follows:

1. Title Page: Give the title of the experiment, and the date the experiment was per-
formed.

2. Abstract: This should be a 1 paragraph summary of what is to follow including the
results. It is suggested that you write the abstract after the rest of the report is
complete.

3. Introduction: This should be a discussion of the purpose of the experiment.

4. Theory: This should provide a derivation of the key formulas used in the experiment
and in the data analysis section. Definitions must be provided for all symbols used in
this and subsequent sections.

5. Procedure: Attach the outline of the procedure you brought to class and had signed
by your TA.

6. Original Data: Attach the original data signed by your TA.

7. Data Table: Tabulate your data so that it can be used in the calculations to follow.

23.4 Calculations

1. We assume that the density of water and butanol solutions are the same and unchanging
during the course of the experiment. We can then determine the surface tension of
each solution, γs using

γs = γH2O
hs
hH2O

(101)

where γH2O is the surface tension of water obtained from the table, hs is the capillary
rise of the solution and hH2O is the capillary rise of pure water.

2. Be sure to calculate the surface concentration in both units of mol cm−2 and molecules
per square angstrom as discussed in your textbooks.
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Figure 9: The activity coefficient of butanol as a function of concentration.
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3. For the butanol calculations, use the activity coefficients given on page 302 of your
textbooks. Alternatively, you can use the graph of the activity coefficient as a function
of concentration given Fig. 9. You may use the same activity coefficients for all forms
of butanol.

4. Error Analysis: Propagate the errors for only the first and last points on the graph of
the surface tension as a function of the logarithm of the activity of the solution. Use the
two calculated errors to determine the limiting slopes of your graph. Use the limiting
slopes to estimate the error in your determined surface concentrations. Make sure to
express the errors in both mol cm−2 and molecules Å−2. A conversion is required.
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24 Tables of Data
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