6.5 An Example of a Polar Reaction: Addition of H_2O to Ethylene

Addition of water to ethylene
- Typical polar process
- Acid catalyzed addition reaction (Electrophilic addition reaction)

\[
\begin{array}{c}
\text{Ethylene} \\
\text{H}_2\text{SO}_4 \text{ catalyst} \\
\text{250 °C} \\
\text{Ethanol}
\end{array}
\]

Polar Reaction
- All polar reactions take place between an electron-poor site and an electron-rich site, and they involve the donation of an electron pair from nucleophiles to electrophiles

An Example of a Polar Reaction: Addition of H_2O to Ethylene

Reactants of reaction
- Ethylene
 - An alkene, contains a C=C double bond (overlapping orbitals from two sp2-hybridized carbon atoms)
- C=C double bond
 - Has greater electron density than single bonds
 - Electrons in σ bond are more accessible to approaching reactants
 - Nucleophilic and reacts with electrophile

Water
- In presence of a strong acid, it is protonated to give the hydronium ion H_3O^+ (proton, H+, donor and electrophile).

Polar reaction
- Electrophile-nucleophile combination
Carbocation
- Formed in step two of the acid-catalyzed electrophilic addition reaction of ethylene and water
- Positively charged carbon species with only six valence electrons
- Electrophile that can accept an electron pair from a nucleophile

An Example of a Polar Reaction: Addition of H\textsubscript{2}O to Ethylene

6.6 Using Curved Arrows in Polar Reaction Mechanisms

Rule 1 – Electrons move from a nucleophilic source (Nu: or Nu-) to an electrophilic sink (E or E+)

- Nucleophilic source must have an electron pair available
- Electrophilic site must be able to accept electron pair

Using Curved Arrows in Polar Reaction Mechanisms

Rule 2 – The nucleophile can be either negatively charged or neutral
- Negatively charged (the atom gives away an electron pair and becomes neutral):
- Neutral (the atom gives away an electron pair to acquire a positive charge):
 Rule 3 – The electrophile can be either positively charged or neutral
 • Positively charged (the atom bearing the charge becomes neutral after accepting electron pair):

 ![Positively charged reaction](image)

 • Neutral (the atom acquires a negative charge after accepting electron pair):

 ![Neutral reaction](image)

 Rule 4 – The octet rule must be followed

 ![Octet rule example](image)

 Worked Example 6.2

 Using Curved Arrows in Reaction Mechanisms

 Add curved arrows to the following polar reactions to show the flow of electrons

 ![Worked example reaction](image)
6.7 Describing a Reaction: Equilibria, Rates, and Energy Changes

Every chemical reaction can proceed in either the forward or reverse direction

\[aA + bB \rightleftharpoons cC + dD \]

- The position of the resulting chemical equilibrium is expressed by the equilibrium constant equation \(K_{eq} \)

\[K_{eq} = \frac{[C]^c[D]^d}{[A]^a[B]^b} \]

- \([C]\) = equilibrium concentration of C raised to the power of its coefficient in the balanced equation
- \([D]\) = equilibrium concentration of D raised to the power of its coefficient in the balanced equation
- \([A]\) = equilibrium concentration of A raised to the power of its coefficient in the balanced equation
- \([B]\) = equilibrium concentration of B raised to the power of its coefficient in the balanced equation

Describing a Reaction: Equilibria, Rates, and Energy Changes

The value of \(K_{eq} \) tells which side of the reaction arrow is energetically favored

- \(K_{eq} > 1 \)
 - Product concentration term \([C]^c[D]^d\) is much larger than reactant concentration term \([A]^a[B]^b\)
 - Reaction proceeds from left to right
- \(K_{eq} = 1 \)
 - Comparable amounts of both products and reactants are present at equilibrium
- \(K_{eq} < 1 \)
 - Product Concentration \([C]^c[D]^d\) is much smaller than reactant concentration \([A]^a[B]^b\)
 - Reaction proceeds from left to right

Describing a Reaction: Equilibria, Rates, and Energy Changes

Equilibrium Expression (\(K_{eq} \))

- Reaction of ethylene with \(H_2O \)

\[H_2C=CH_2 + H_2O \rightleftharpoons CH_3CH_2OH \]

\[K_{eq} = \frac{CH_3CH_2OH \cdot H_2O}{H_2C=CH_2} = 25 \]

Because \(K_{eq} > 1 \)

- the reaction proceeds as written (left to right)
- some unreacted ethylene remains at equilibrium
Describing a Reaction: Equilibria, Rates, and Energy Changes

For a reaction to have a favorable equilibrium constant and proceed from left to right
• the energy of products must be lower than the energy of the reactants (energy must be released)

Gibbs free-energy change (ΔG)
• the energy change that occurs during a chemical reaction (energy difference between reactants and products)
 \[\Delta G = G_{\text{products}} - G_{\text{reactant}} \]

Describing a Reaction: Equilibria, Rates, and Energy Changes

Gibbs Free-Energy Change, ΔG°
• ΔG° is negative
 - Reaction is exergonic (energy lost by system and released to surroundings)
 - Has favorable equilibrium constant
 - Can occur spontaneously
• ΔG° is positive
 - Reaction is endergonic (energy absorbed into system from surroundings)
 - Unfavorable equilibrium constant
 - Cannot occur spontaneously

ΔG° denotes standard free-energy change for a reaction
• (º) means that the reaction is carried out under standard conditions
K_{eq} and ΔG° are mathematically related because they both measure whether a reaction is favored

\[\Delta G^\circ = -RT \ln K_{eq} \quad \text{or} \quad K_{eq} = e^{\Delta G^\circ / RT} \]

where
- $R = 8.314 \text{ J/(K \cdot mol)} = 1.987 \text{ cal/(K \cdot mol)}$
- $T = \text{Kelvin temperature}$
- $e = 2.718$
- $\ln K_{eq} = \text{natural logarithm of } K_{eq}$
- $K_{eq} = 25$ for the reaction of ethylene with H_2O
 \[\ln K_{eq} = \ln 25 = 3.2 \]

$\Delta G^\circ = -RT \ln K_{eq} = -[8.314 \text{ J/(K \cdot mol)}] \times (298 \text{ K}) \times (3.2)$
 \[= -7800 \text{ J/mol} = 7.9 \text{ kJ/mol} \]
Describing a Reaction: Equilibria, Rates, and Energy Changes

The free-energy change ΔG made up of two terms:

1. Enthalpy ΔH
2. Entropy $T\Delta S$ (temperature dependent)

$$\Delta G^\circ = \Delta H^\circ - T\Delta S^\circ$$ (standard conditions)

Reaction of ethylene with H_2O at 298 K

$$\text{H}_2\text{C} = \text{CH}_2 + \text{H}_2\text{O} \rightleftharpoons \text{CH}_3\text{CH}_2\text{OH}$$

$\Delta G^\circ = -7.9 \text{ kJ/mol}$
$\Delta H^\circ = -44 \text{ kJ/mol}$
$\Delta S^\circ = -0.12 \text{ kJ/(K \cdot mol)}$

Describing a Reaction: Equilibria, Rates, and Energy Changes

Change in Enthalpy, ΔH

- The heat of reaction
- Calculated as the difference in strength between the bonds broken and the bonds formed under standard conditions
 $$\Delta H^\circ = H^\circ_{\text{products}} - H^\circ_{\text{reactants}}$$ (standard conditions)

- Negative ΔH°
 - The reaction releases heat, exothermic
 - Products are more stable than reactants
 - Have less energy than reactants
 - Have stronger bonds than the reactants

- Positive ΔH°
 - The reaction absorbs heat, endothermic
 - Products are less stable than reactants
 - Have more energy than reactants
 - Have weaker bonds than reactants

Describing a Reaction: Equilibria, Rates, and Energy Changes

Entropy change, ΔS°

$$\Delta S^\circ = S^\circ_{\text{products}} - S^\circ_{\text{reactants}}$$

- The change in molecular disorder during a reaction at standard conditions

- Negative ΔS°
 - Disorder decreases during reaction
 - Addition reaction
 - reaction allows more freedom of movement in products than reactants by splitting one molecule into two
 $$A + B \rightarrow C$$

- Positive ΔS°
 - Disorder increases during reaction
 - Elimination reaction
 - reaction restricts freedom of movement of two molecules by joining them together
 $$A \rightarrow B + C$$
Describing a Reaction: Equilibria, Rates, and Energy Changes

\(K_{eq} \)

- Tells position of equilibrium
- Tells how much product is theoretically possible
- Does not tell the rate of reaction
- Does not tell how fast equilibrium is established

Rate → Is the reaction fast or slow?

Equilibrium → In what direction does the reaction proceed?

TABLE 6.2

<table>
<thead>
<tr>
<th>Term</th>
<th>Name</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta G^\circ)</td>
<td>Gibbs free-energy change</td>
<td>The energy difference between reactants and products. When (\Delta G^\circ) is negative, the reaction is exergonic, has a favorable equilibrium constant, and can occur spontaneously. When (\Delta G^\circ) is positive, the reaction is endergonic, has an unfavorable equilibrium constant, and cannot occur spontaneously.</td>
</tr>
<tr>
<td>(\Delta H^\circ)</td>
<td>Enthalpy change</td>
<td>The heat of reaction, or difference in strength between the bonds broken in a reaction and the bonds formed. When (\Delta H^\circ) is negative, the reaction releases heat and is exothermic. When (\Delta H^\circ) is positive, the reaction absorbs heat and is endothermic.</td>
</tr>
<tr>
<td>(\Delta S^\circ)</td>
<td>Entropy change</td>
<td>The change in molecular randomness during a reaction. When (\Delta S^\circ) is negative, randomness decreases; when (\Delta S^\circ) is positive, randomness increases.</td>
</tr>
</tbody>
</table>

6.8 Describing a Reaction: Bond Dissociation Energies

Bond strength is a measure of the heat change that occurs on breaking a bond, formally defined as bond dissociation energy

- Each bond has its own characteristic strength

Bond Dissociation Energy (D)

- The amount of energy required to break a given bond to produce two radical fragments when the molecule is in the gas phase at 25\(^\circ\)C

\[\text{A : B} \xrightarrow{\text{Bond dissociation energy}} \text{A}^\cdot + \text{B}^\cdot \]
Connections between bond strengths and chemical reactivity

- Exothermic reactions are favored by products with stronger bonds and reactants with weaker bonds
 - Bond formation in products releases heat
 - Bond breaking in reactants requires heat

Reactive substances that undergo highly exothermic reactions such as ATP (adenosine triphosphate) are referred to as “energy-rich” or high energy compounds

- ATP has relatively weak bonds (bonds require only a small amount of heat to break)
Glycerol vs. ATP reaction with water
- Bond broken in ATP is substantially weaker than the bond broken in glycerol-3-phosphate

Describing a Reaction: Bond Dissociation Energies

For a reaction to take place
- Reactant molecules must collide
- Reorganization of atoms and bonds must occur

Describing a Reaction: Energy Diagrams and Transition States

Chemists use energy diagrams to graphically depict the energy changes that occur during a chemical reaction
- Vertical axis
 - the total energy of all reactants
- Horizontal axis
 - “reaction coordinate” the progress of the reaction from beginning to end
Activation Energy (ΔG^\ddagger)
- The energy difference between reactants and transition state
- Determines how rapidly the reaction occurs at a given temperature
 - Large activation energy results in a slow reaction
 - Small activation energy results in a rapid reaction
- Many organic reactions have activation energies in the range of 40 – 150 kJ/mol (10 – 35 kcal/mol)
 - If ΔG^\ddagger less than 80 kJ/mol the reaction takes place at or below room temperature
 - If ΔG^\ddagger more than 80 kJ/mol the reaction requires heating above room temperature

Describing a Reaction: Energy Diagrams and Transition States

Activation energy leads to transition state

The Transition State
- Represents the highest-energy structure involved in the reaction
- Unstable and cannot be isolated

A hypothetical transition–state structure for the first step of the reaction of ethylene with H_2O^+
- the $\text{C}=$-C bond about to break
- the $\text{C}=$-H bond is beginning to form

Once transition-state is reached the reaction either:
- Continues on to give carbocation product
 - New $\text{C}=$-H bond forms fully
 - Amount of energy corresponding to difference between transition-state (ΔG^\ddagger) and carbocation product is released
 - Since carbocation is higher in energy than the starting alkene, the step is endergonic (ΔG°, absorbs energy)
- Reverts back to reactants
 - Transition-state structure comes apart
 - Amount of free-energy ($-\Delta G^\ddagger$) is released
Describing a Reaction: Energy Diagrams and Transition States

Each reaction has its own profile

(a) a fast exergonic reaction (small G^\ddagger, negative G°);

(b) a slow exergonic reaction (large G^\ddagger, negative G°);

(c) a fast endergonic reaction (small G^\ddagger, small positive G°);

(d) a slow endergonic reaction (large G^\ddagger, positive G°).

6.10 Describing a Reaction: Intermediates

Reaction Intermediate

- A species that is formed during the course of a multi-step reaction but is not final product
- More stable than transition states
- May or may not be stable enough to isolate
- The hydration of ethylene proceeds through two reaction intermediates, a carbocation intermediate and a protonated alcohol intermediate

Describing a Reaction: Intermediates

Each step in a multi-step process can be considered separately (each step has ΔG^\ddagger and ΔG°)

Overall ΔG° of reaction is the energy difference between initial reactants and final products

Overall energy diagram for the reaction of ethylene with water
Describing a Reaction: Intermediates

Biological reactions occur at physiological conditions
- Must have low activation energy
- Must release energy in relatively small amounts

Enzyme catalyst changes the mechanism of reaction to an alternative pathway which proceeds through a series of smaller steps rather than one or two large steps

Worked Example 6.3

Drawing Energy Diagram for Reactions
Sketch an energy diagram for a one-step reaction that is fast and highly exergonic

6.11 A Comparison between Biological Reactions and Laboratory Reactions

Solvent
- Laboratory reaction
 - Organic liquid, such as ether or dichloromethane
 - Used to dissolve reactants
 - Used to bring reactants into contact with each other
- Biological reaction
 - Aqueous medium inside cell

Temperature
- Laboratory reaction
 - Takes place over wide range of temperatures (typically 80-150°C)
- Biological reaction
 - Takes place at the temperature of the organism
A Comparison between Biological Reactions and Laboratory Reactions

Catalyst
- Laboratory reactions
 - Either none or very simple
- Biological reactions
 - Catalyzed by enzymes

Enzyme
- A large, globular protein molecule that contains a protected pocket called an active site

Active site
- The pocket in an enzyme where a substrate is bound and undergoes reaction
 - Lined by acidic or basic groups
 - Has precisely the right shape to bind and hold substrate molecule

Reagent size
- Laboratory reactions
 - Usually small and simple (such as Br₂, HCl, NaBH₄, CrO₃)
- Biological reactions
 - Relatively complex reagents called coenzymes
 - ATP is the coenzyme in the hexokinase-catalyzed phosphorylation of glucose
 - Reduced NADH is the coenzyme that effects hydrogenation in many biological pathways
Specificity

- Laboratory reactions
 - Little specificity for substrate (a catalyst such as sulfuric acid might be used to catalyze the addition of water to thousands of different alkenes)
- Biological reactions
 - Very high specificity for substrate (an enzyme will catalyze only a very specific reaction)

TABLE 6.1
A Comparison of Typical Laboratory and Biological Reactions

<table>
<thead>
<tr>
<th></th>
<th>Laboratory reaction</th>
<th>Biological reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solvent</td>
<td>Organic liquid, such as ether</td>
<td>Aqueous environment in cells</td>
</tr>
<tr>
<td>Temperature</td>
<td>Wide range: ~60 to 150 °C</td>
<td>Temperature of organism</td>
</tr>
<tr>
<td>Catalyst</td>
<td>Either none or very simple</td>
<td>Large, complex enzymes needed</td>
</tr>
<tr>
<td>Reactant size</td>
<td>Usually small and simple</td>
<td>Relatively complex coenzymes</td>
</tr>
<tr>
<td>Specificity</td>
<td>Little specificity for substrate</td>
<td>Very high specificity for substrate</td>
</tr>
</tbody>
</table>