Electrolytes for Lithium-ion Batteries with Wide Operating Temperature Range

Graduate Seminar 644, April 20th, 2012

Liu (Amy) Zhou

Lithium-ion batteries have been extensively investigated as power sources for electric vehicles due to their high energy density. Electric vehicle applications require a superior retention of performance (10-15 years of calendar life) over a wide range of temperatures (-30 to 60 °C). The electrolyte used in commercial lithium-ion batteries are composed of LiPF_6 dissolved in organic carbonates or esters, among which ethylene carbonate (EC) is a required component due to the importance of EC in the formation of the anode solid electrolyte interphase (SEI). However, LiPF_6 is very sensitive to environmental moisture and has poor thermal stability. Furthermore, EC leads to poor performance at low temperature due to its high melting point.

Lithium difluoro(oxalato)borate (LiDFOB) is a promising alternative lithium salt for lithium-ion battery electrolytes. The ligand exchange reaction of LiDFOB to generate Lithium tetrafluoroborate (LiBF₄) and Lithium bis(oxalato)borate (LiBOB) was investigated by Nuclear Magnetic Resonance (NMR) spectroscopy. A thermally induced equilibrium exists between LiDFOB, LiBF₄ and LiBOB and the equilibrium favors LiDFOB.

A novel salt, lithium tetrafluorooxalatophosphate [LiPF₄(C_2O_4), LiFOP] was developed. It has much better thermal and hydrolytic stability and performance retention upon accelerated aging. This unique combination of properties makes LiFOP an interesting alternative to LiPF₆. The cycling performance of LiFOP electrolyte is compared with LiPF₆ electrolyte in the presence of several different electrode materials. In order to develop a better understanding of the sources of performance differences between LiFOP and LiPF₆, the surfaces of the electrodes have been analyzed after cycling.

Propylene carbonate (PC) is a good candidate for improving low temperature performance due to a low melting point, and comparable dielectric constant compared to EC. Unfortunately, replacing EC for PC in a LiPF₆ battery, results in continuous electrolyte reduction and exfoliation of the graphite anode. This problem can be solved by using LiFOP with PC. To confirm reversible cycling behavior of LiFOP/PC electrolytes, the cycling properties were investigated with a natural graphite anode and either LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ or LiFePO₄ cathodes. A comparison of the low temperature cycling performance of LiPF₆/EC electrolyte and LiFOP/PC electrolyte was also conducted.

References

- 1. Liu Zhou, Wentao Li, Mengqing Xu, Brett L. Lucht, *Electrochemical and Solid-State Letters*, 14 (11) A161-A164 (2011).
- 2. Liu Zhou, Swapnil Dalavi, Mengqing Xu, Brett L. Lucht, Journal of Power Sources, 196 (2011) 8073–8084.

3. Liu Zhou, Brett L. Lucht, Journal of Power Sources, 205 (2012) 439–448.