Unconventional descriptions of correlated electrons with balanced accuracy and efficiency

Seminar

Monday, November 25, 2024

3:00 – 4:00 p.m.

Beaupre Center, Room 105 Electron correlation, the quantum many-body nature of electrons not captured by the mean-field approximation, remains the central challenge in modern quantum chemistry. Its accurate and efficient description holds the promise of accelerating discoveries in transition-metal and f-block chemistry, where electron correlation effects are especially prominent. In this talk, I will present my work on addressing this challenge by developing unconventional methods and algorithms motivated by physical insights and mathematical rigor. First, I will demonstrate the importance of screening effects for capturing dynamic correlation. I will showcase the success of the random phase approximation and its screened exchange correction in describing noncovalent interactions and guiding catalyst design. Second, I will show how symmetry projection can account for static correlation. I will highlight a reformulation of Wick's theorem that ensures efficient and numerically robust implementations of symmetryprojected methods. Finally, I will discuss bridging the treatments of these two aspects of electron correlation to develop theories with balanced accuracy and efficiency.

Guo Chen Department of Chemistry Rice University

THE UNIVERSITY OF RHODE ISLAND

Department of Chemistry Fall 2024 Seminar Series

Host: Dugan Hayes

Associate Professor dugan@uri.edu 401-874-5516 (office) 617-785-4633 (mobile)