UNIVERSITY OF RHODE ISLAND
Department of Chemistry
VIRTUAL SEMINAR

3:00 PM, Monday, March 1, 2021
Please email blucht@uri.edu for link

Dr. Johnathan Kuo
University of Pennsylvania

“Consequences of Proton Tautomerism in Organotransition Metal Chemistry”

HOST
Brett Lucht
Department of Chemistry
401-874-5071
Consequences of Proton Tautomerism in Organotransition Metal Chemistry
Jonathan L. Kuo
Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104.

This seminar explores the importance of proton tautomerism in organotransition metal chemistry. For example, using a doubly protic bis-pyrazolato-pyridine pincer ligand, an octahedral IrIII-H has been synthesized from an IrI starting material. This hydride was generated by adding sufficient electron density to the metal center such that it became the thermodynamically preferred site of protonation. It was observed via UV-Vis spectroscopy that this octahedral IrIII-H establishes an equilibrium with a ligand protonated IrI. A consequence of this tautomerism is that this mixture evolves H$_2$ in a dinuclear reductive elimination reaction (generating an IrII-IrII dimer). This case study highlights how proton tautomerism can facilitate access to new reaction pathways for organotransition metal compounds.

These lessons have been applied towards the design of an Ir-based model of the extradiol catechol dioxygenases. This model compound reacts with O$_2$, ultimately resulting in the selective oxygenation of the aminophenolate ligand. The product of this oxygenation reaction is the first crystallographically characterized transition metal orthoester. We suggest that this outcome was made possible by proton tautomerism.

Jonathan L. Kuo, Ph.D.

Jonathan L. Kuo, Ph.D. is a National Institutes of Health sponsored Postdoctoral Fellow at the University of Pennsylvania. Previously, he earned his doctorate from Columbia University and his B.S. from the University of California, Los Angeles. Jonathan is interested in developing transition metal catalyzed processes that approach perfect atom economy. Examples include oxidations which use O$_2$, or reductions which use H$_2$. Many of these transformations involve a careful consideration of how to choreograph the movement of protons and electrons around a transition metal ion in a controlled fashion.