LECTURE NOTES FOR GENERAL CHEMISTRY © 2007
CHAPTER C THERMOCHEMISTRY

ENDOTHERMIC: ΔH POSITIVE: $H_{\text{products}} > H_{\text{reactants}}$

EXOTHERMIC: ΔH NEGATIVE: $H_{\text{products}} < H_{\text{reactants}}$

H IS ENTHALPY

AT CONSTANT PRESSURE, HEAT FLOW: $Q_p = H_{\text{products}} - H_{\text{reactants}} = \Delta H$

ENTHALPY IS A STATE FUNCTION

ENTHALPY IS FIXED WHEN “STATE” (T, P) IS SPECIFIED

ENTHALPY OF A SUBSTANCE CHANGES WITH TEMP

H OF 1 g $H_2O(l)$ AT 100°C – H OF 1 g $H_2O(l)$ AT 0°C = 418 J

ALSO, PHASE CHANGES

H OF 1 g $H_2O(s)$ AT 0°C – H OF 1 g $H_2O(s)$ AT 0°C = 333 J

H OF 1 g $H_2O(g)$ AT 100°C – H OF 1 g $H_2O(g)$ AT 0°C = 2257 J

1 mol (18 g) H_2O HAS 18X H OF 1 g H_2O (EXTENSIVE)

THERMOCHEMICAL EQUATIONS

$H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O$ $\Delta H = -285.8 \text{ KJ (EVO)}$

$HgO(s) \rightarrow Hg(l) + \frac{1}{2} O_2(g)$ $\Delta H = 90.7 \text{ KJ (ENDO)}$

1) (DOUBLE THESE COEFFICIENTS, MUST DOUBLE ΔH)

2) ΔH FOR REVERSE REACTION IS EQUAL, BUT OPPOSITE SIGN OF FORWARD REACTION

3) ΔH IS INDEPENDENT OF # OF STEPS OVERALL (STATE FUNCTION)
\[\text{Sm}(s) + 2 \text{Cl}_2(g) \rightarrow \text{SmCl}_4 \]

THIS REACTION MIGHT TAKE 2 STEPS

\[\text{Sm}(s) + \text{Cl}_2(g) \rightarrow \text{SmCl}_2(s) \quad \Delta H = -349.8 \text{ KJ} \]
\[\text{SmCl}_2(s) + \text{Cl}_2(g) \rightarrow \text{SmCl}_4(s) \quad \Delta H = -195.4 \text{ KJ} \]
\[\text{Sm}(s) + 2\text{Cl}_2(g) \rightarrow \text{SmCl}_4(s) \quad \Delta H = -545.2 \text{ KJ} \]

Hess's Law

\(\Delta H \) FOR A REACTION IS THE SAME NO MATTER HOW MANY STEPS IT TAKES.

\(\Delta H \) IN STOICHIOMETRY

\[\text{H}_2(g) + \text{Cl}_2(g) \rightarrow 2 \text{HCl}(g) \quad \Delta H = -184.6 \text{ KJ} \]

UNIT RELATIONSHIPS

\[1 \text{ mol H}_2 = -184.6 \text{ KJ} \]
\[1 \text{ mol Cl}_2 = -184.6 \text{ KJ} \]
\[2 \text{ mol HCl} = -184.6 \text{ KJ} \]

WHAT IS THE ENTHALPY CHANGE WHEN 75.0 g HCl IS FORMED?

\[75.0 \text{ g HCl} \times \frac{1 \text{ mol HCl}}{36.46 \text{ g HCl}} \times \frac{-184.6 \text{ KJ}}{2 \text{ mol HCl}} = 380 \text{ KJ} \]

Calorimetry

THE HEAT CAPACITY (\(C \)) OF A SYSTEM IS THE QUANTITY OF HEAT REQUIRED TO CHANGE THE TEMPERATURE OF A SYSTEM BY 1°C. UNITS ARE J/°C OR J/K
HEAT CAPACITY

CALCULATE THE HEAT CAPACITY OF AN IRON BLOCK THAT REQUIRES 1015 J TO WARM FROM 25°C TO 100°C.

\[\begin{align*}
J &= 1015 \\
^\circ C &= 100^\circ C - 25^\circ C = 75^\circ C \\
C &= \frac{1015 \, J}{75^\circ C} = 14 \, \frac{J}{^\circ C}
\end{align*} \]

MORE USEFUL IS THE SPECIFIC HEAT

SPECIFIC HEAT IS THE HEAT CAPACITY OF 1 g OF SUBSTANCE

THE SPECIFIC HEAT OF \(H_2O \) = 4.18 \(\frac{J}{g \cdot ^\circ C} \)

IF THE IRON BLOCK ABOVE HAD A MASS OF 31 g, SPECIFIC HEAT = \(\frac{145}{31 \, g \cdot ^\circ C} = 0.45 \, \frac{J}{g \cdot ^\circ C} \)

MEASURING HEATS OF REACTION

A 1.23 g SAMPLE OF FUEL IS BURNED IN A BOMB CALORIMETER WITH A HEAT CAPACITY OF 7.45 KJ/°C. THE TEMP RISES FROM 21.80 TO 24.30°C.

WHAT IS THE HEAT OF COMBUSTION OF FUEL IN KJ/g?

\[\frac{24.30^\circ C - 21.80^\circ C}{250^\circ C} \]

7.45 KJ °C \(\times \) 2.50°C = 18.6 KJ NEEDED

\[\frac{18.6 \, KJ}{1.23 \, g \, \text{fuel}} = 15.1 \, KJ/g \text{ fuel} \]
CHAPTER 6

TOPICS

CONSERVATION OF ENERGY AND THE FIRST LAW

WORK WITH EXOTHERMIC AND ENDOThERMIC: ΔH^+ AND ΔH^-

USE ENTHALPY IN STOICHIOMETRIC CALCULATIONS

WORK WITH HEAT CAPACITY

WORK WITH SPECIFIC HEAT

DO CALORIMETRIC CALCULATIONS

WORK WITH HESS'S LAW, SUMMING ΔH FOR MULTISTEP REACTIONS

QUESTIONS

25, 27, 29

33, 35

43, 45

51, 53

55, 57

65, 67