Chemistry 431 - Physical Chemistry I
Course Syllabus
Fall 2015

1. Instructor: Dr. David L. Freeman
 Phone: 874-5093
 Office: 333 Pastore
 e-mail: freeman@chm.uri.edu
 Office Hours: MWF 10

2. Scheduling: MWF 9, 122 Pastore

4. Prerequisites: CHM 192 or CHM 112, MTH 142, PHY 112 or 204. Knowledge of the material in these courses will be assumed.

5. WWW course home page: http://www.chm.uri.edu/courses/?chm431&1

6. Course requirements:

 (a) Weekly quizzes (every Friday)
 The lowest two numerical scores will be dropped in determining grades. 300

 (b) Final exam (Saturday, December 19, 8-11 AM) 200

 (c) Total 500

 Grades will be determined on a curve. Incompletes will be given only for valid medical reasons. Quizzes cannot be made up. If a Friday class is canceled owing to weather or any other reason, the quiz will be given on the next date the class meets.

7. Overview and Course Goals:
Physical chemistry is the study of the application of the principles of physics to chemical phenomena. In a simple sense, we can think of physical chemistry as subdivided into three topics: thermodynamics, quantum mechanics and kinetics. In reality, these subtopics are interrelated, and it is a goal of both CHM 431 and CHM 432 for you to appreciate the relations.

Physical chemistry has the reputation of being a hard course. It is my feeling that the difficulties faced by third year students trying to learn physical chemistry arise from the large set of topics that must be mastered. Additionally, many of the topics that are covered are inherently abstract. This abstraction of chemical phenomena is not easy, and a major course goal for this year is to understand how the laws of physics enable us to understand the principles of chemistry in an abstract way.

Although physical chemistry is difficult, there is a way to be successful in this course. It is imperative that you do homework. Problem sets will be posted about once a week, and the homework problems will be representative of the kinds of questions you will be given on the examinations. Solutions to the problem sets will be posted before each quiz. It is important that the homework be completed before the solutions are posted for you to gain adequate practice with the material. It is to be emphasized that understanding solutions to a problem with the solution sets is not difficult. The initiation of solutions to problems is difficult, and you will be asked to initiate solutions on examinations.

This semester we will be concerned with the principles that govern the macroscopic behavior of chemical systems. These principles are contained in the laws of thermodynamics. Our principle goal for CHM 431 is to understand the three laws of thermodynamics and how to apply the laws to chemical systems.

The thermodynamic laws we shall learn are only valid for systems at equilibrium. The thermodynamic laws provide the basis for the rationalization of equilibrium phenomena, including both phase and chemical equilibria. Understanding the thermodynamic basis of equilibrium is our third course goal.

8. The CHM 431 Web page:

In this course all problem sets, problem set solutions, quiz solutions and final exam solutions are to be distributed on the course web page. No paper copies of the problem sets are to be distributed. The URL of our course web page is http://www.chm.uri.edu/courses/?chm431&1. It is strongly suggested that you link to our web page to obtain the first problem set as soon as possible.

It is expected that for most of you, success in this course will require some level of help beyond classroom instruction. Because some of you may find it difficult to come to the scheduled office hours, we have installed as part of our course web pages, a page that can be used to submit questions. Questions are submitted by anyone in the class by filling out a form on the web page, and answers are distributed either to the entire class or only to the person asking the question. If the entire class is to receive a copy
of the question and answer, the question is treated as anonymous; i.e. the person who asks the question is never identified. In fact, it is possible to submit a question so that even the instructor does not know who submitted the question. Anonymous questions and responses by the instructor are distributed automatically to everyone who has submitted their e-mail address to the instructor. With ordinary electronic mail, there is a private correspondence between the student and instructor. By using the web page, the entire class has an opportunity to learn from the questions submitted.

The use of the web page does not preclude personal interaction between any of you and the course instructor. Dr. Freeman has regular office hours, and you are all encouraged to make use of these hours. Alternate meeting times can be arranged by appointment. Additionally, you can contact Dr. Freeman by e-mail or telephone. The e-mail address and phone number for Dr. Freeman is given on the first page of this syllabus.

To receive copies of the submitted questions and the answers to the questions, you must submit your e-mail address. To submit your e-mail address, go to our home page (http://www.chm.uri.edu/courses/?chm431&1) and click on “Subscribe to the CHM 431 list.” On the resulting form, enter your e-mail address, click on the small “subscribe” button and then click on the submit button. You can also use this form to unsubscribe from the list in case you drop CHM 431.

Any student in CHM 431 can submit questions and comments to Dr. Freeman. Submission of such comments or questions must be made using the WWW home page for this course. The address (URL) of our home page is http://www.chm.uri.edu/courses/?chm431&1. To submit a question to the list, you must click on the highlighted text that says “submit a question to the CHM 431 list.” As an example of how to use the list, suppose a student in our class, Ms. Benzene Ring, wonders, “Is work a path or a state function?” (If you don’t know what this means, don’t worry. You will understand the question early in the semester). To obtain an answer to her question, Ms. Ring links her web browser (e.g. Firefox, Safari or Microsoft Internet Explorer) to http://www.chm.uri.edu/courses/?chm431&1, and she then clicks on the text linking her to the page for questions (i.e. the highlighted text that says “submit a question to the CHM 431 list”). Ms. Ring then enters her e-mail address in the appropriate box and specifies whether she wants her question to be answered to the entire CHM 431 class or to her alone. Ms. Ring then types in the large box

Is work a path or a state function?

Ms. Ring then clicks the “send” button. Ms. Ring’s question is received by Dr. Freeman. Dr. Freeman then sends an e-mail message to the whole list that might be

Subject: work
The question is: Is work a path or a state function?
Answer: Work is a path function.
Now Ms. Ring and the entire class have an answer to her question.

If the answer to the question can be sent to the entire list, the answer will not indicate who asked the question. If Ms Ring wants to ask the question with full anonymity so that even Dr. Freeman has no idea who asked the question, the e-mail portion of the form can be left blank. Of course, if the e-mail section of the form is blank, the answer must be sent to the list and not just to the sender.

Because many questions may contain mathematical formulas, we need a notation to communicate the special symbols used in the course. To avoid confusion, it is most useful if we agree on the same set of symbols. The symbols that follow are taken from a language called \(\text{LATEX} \). \text{LATEX} is a language that is frequently used to prepare scientific documents, and \(\text{LATEX} \) can be used to translate special symbols into simple text characters. By learning \(\text{LATEX} \) notation, you will learn a widely used method to communicate mathematical symbols via e-mail. The instructor plans to use these symbols in answering your questions, and it is asked that you use the same symbols in posing questions. The most important symbols are the following:

(a) Greek letters are represented by \ followed by the name of the letter. For example \(\alpha \) is typed \texttt{alpha}, \(\beta \) is typed \texttt{beta}, and so on. A Greek letter is made upper case by making the first letter of its name upper case. For example, the letter \(\Delta \) is typed \texttt{Delta}.

(b) Subscripts are represented by \{ \} where the brackets contain the subscripts. For example, \(\mu_{ij} \) is typed \texttt{mu_{ij}}.

(c) Superscripts are represented by \{ \} where the brackets contain the superscripts. For example, \(\beta^{12} \) is typed \texttt{beta\{12\}}.

(d) Infinity (\(\infty \)), is typed \texttt{infty}.

(e) The integral sign \(\int \) is typed \texttt{int}. The limits on a definite integral are included by introducing subscripts and superscripts. As an example \(\int_{0}^{\infty} e^{-x^2}dx \) is typed \texttt{int\{0\}\{infty\} e^{-x\{2\}} dx}.

(f) The partial derivative symbol \(\partial \) is typed \texttt{partial}.

(g) The summation sign \(\sum \) is typed \texttt{sum}. The lower and upper limits of summation are included as subscripts and superscripts. As an example \(\sum_{n=0}^{\infty} 1/n^2 \) is typed \texttt{sum\{n=0\}\{infty\} 1/n\{2\}}.

(h) Square roots \(\sqrt{a+b} \) are typed \texttt{sqrt\{a+b\}}.

(i) The arrow in chemical reactions \(\rightarrow \) is typed \texttt{-->}. For example \(C+O_2 \rightarrow CO_2 \) is typed \texttt{C + O\{2\} --> CO\{2\}}.

Let us now look at another example of a question submitted using the web. In this case, Ms. Ring has a question requiring an equation. This might be a real question. If you don’t understand the context, don’t worry. You will understand the details of the question later in the course. Suppose Ms. Ring wants to ask
“In deriving the expression for the phase equilibrium line between solid and liquid, when evaluating the integral expression

\[p_2 - p_1 = \int_{T_1}^{T_2} \frac{\Delta H}{T \Delta V} dT \]

the ratio of \(\Delta H \) to \(\Delta V \) is taken outside the integral. What is the justification for this?”

To submit the question, Ms. Ring uses her web browser to attach to http://www.chm.uri.edu/courses/?chm431&1, clicks on the line that says, “submit a question to the CHM 431 list,” and then Ms. Ring enters the information requested by the form. If Ms. Ring wishes to remain anonymous, Ms. Ring leaves the e-mail box blank. Ms. Ring then types into the large box

In deriving the expression for the phase equilibrium line between solid and liquid, when evaluating the integral expression

\[p_2 - p_1 = \int_{T_1}^{T_2} \frac{\Delta H}{T \Delta V} dT \]

the ratio of \(\Delta H \) to \(\Delta V \) is taken outside the integral. What is the justification for this?

and clicks on the submit button. Ms. Ring’s question is received by Dr. Freeman. The answer will be sent either to Ms. Ring alone, or preferably to the entire class if the appropriate box is checked. Dr. Freeman might reply

Subject: Phase equilibrium question
The question is: In deriving the expression for the phase equilibrium line between solid and liquid, when evaluating the integral expression

\[p_2 - p_1 = \int_{T_1}^{T_2} \frac{\Delta H}{T \Delta V} dT \]

the ratio of \(\Delta H \) to \(\Delta V \) is taken outside the integral. What is the justification for this?

The answer is: For solids and liquids the ratio \(\frac{\Delta H}{\Delta V} \) is only weakly dependent on temperature. The ratio, then, can be taken outside the integral to a good approximation.

Remember, your first task is to subscribe to the CHM 431 list by filling out the form on our web pages. You can then send questions and comments to Dr. Freeman using your web browser starting at the URL

http://www.chm.uri.edu/courses/?chm431&1

9. Course outline:
<table>
<thead>
<tr>
<th>Topic</th>
<th>Book Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Energy and Work</td>
<td></td>
</tr>
<tr>
<td>2. Thermodynamic Systems and the Ideal Gas Law</td>
<td>1</td>
</tr>
<tr>
<td>4. State Functions and Some Mathematics for Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>5. Thermochemistry</td>
<td>4</td>
</tr>
<tr>
<td>6. The Second and Third Laws</td>
<td>5 (Skip Sec. 5.11-5.14)</td>
</tr>
<tr>
<td>7. The Free Energy Functions and Chemical Equilibrium</td>
<td>6, 5.12, 5.13</td>
</tr>
<tr>
<td>8. Real Fluids</td>
<td>7</td>
</tr>
<tr>
<td>9. Phase Transitions in One-component Systems</td>
<td>8</td>
</tr>
<tr>
<td>10. Ideal and Real Solutions</td>
<td>9</td>
</tr>
<tr>
<td>11. Electrolyte Solutions</td>
<td>10</td>
</tr>
<tr>
<td>12. Electrochemistry</td>
<td>11</td>
</tr>
<tr>
<td>16. Final Exam</td>
<td>Comprehensive</td>
</tr>
</tbody>
</table>