Course Instructors

Laboratory Director
Cindy Graham Brittain, PhD
Email: cbrittain@chm.uri.edu Phone: 401-874-2028
Office: Beaupre 117C Office Hours: available via URI’s Starfish Success Net

Laboratory Instructors
Sections 7, 8: Kevin Bian, kbian@chm.uri.edu
Sections 1, 2: Shelby Johnson, sjohnson@chm.uri.edu
Sections 5, 6: Alison Leso, aleso@chm.uri.edu
Sections 3, 4: Steve Steinmetz, ssteinmetz@chm.uri.edu

Required Laboratory Materials
- CHM 105 Laboratory Manual, $15.00 at URI Bookstore
- RAM account and ID card to purchase items at the Beaupre 180 Stockroom (no cash can be accepted at Stockroom)
- Safety goggles/glasses, $10.00 at Stockroom (cash accepted at Beaupre 115 Learning Center, in first week of classes)
- Knee-length lab coat, $21.00 at Stockroom
- For some experiments, protective nitrile gloves, $0.25 per pair at Stockroom
- A scientific calculator, with logarithm and exponent functions
- Lab Prep Lessons and Announcements at the CHM 105 Sakai website

Students must take responsibility for carefully studying all lab materials, and following all study/safety instructions.

Attendance

CHM 105 is a laboratory course, which requires hands-on experimentation and direct observation of physical and chemical changes. For this reason, students MUST be present to conduct each experiment. Attendance is required at the day and time for which each student has registered. Under NO circumstances will students be permitted to attend a lab section other than the one for which they have officially registered (except for the Mandatory Safety Training in Week 1).

The course includes 11 laboratory experiments, and a 12th make-up experiment. As the course grade is based on completion of 10 experiments, each student is permitted ONE absence without penalty. Any student who has a second absence MUST complete the make-up experiment on the designated days at the end of the term. A reservation at the Beaupre 180 Stockroom is required to participate in a make-up lab session.

Students who do not complete 10 experiments can expect to receive a failing grade in the course. “Complete” means the student submitted the Pre-Lab Assignment, passed the Pre-Lab Quiz, worked the experiment, and submitted the Report Sheet.

Grading Policy

The course grade will be based on the following:

<table>
<thead>
<tr>
<th>Component</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Pre-Lab Assignments (20 points each)</td>
<td>200</td>
</tr>
<tr>
<td>10 Pre-Lab Quizzes (20 points each)</td>
<td>200</td>
</tr>
<tr>
<td>10 Lab Performance Assessments (10 points each)</td>
<td>100</td>
</tr>
<tr>
<td>10 Report Sheets (60 points each)</td>
<td>600</td>
</tr>
<tr>
<td>Mandatory Laboratory Safety Report Sheet</td>
<td>50</td>
</tr>
<tr>
<td>Laboratory Final Exam</td>
<td>250</td>
</tr>
</tbody>
</table>

1400 points

It’s important to note that for each lab experiment, students have the opportunity to earn a total of 110 points:
- 20 points for the Pre-Lab Assignment,
- 20 points for the Pre-Lab Quiz,
- 60 points for the Report Sheet,
- 10 points for the Lab Performance Assessment.
The Mandatory Lab Safety Report Sheet provides an additional 50 points, and the Lab Final Exam makes up the remainder of the grade (250 points). NO extra credit assignments will be given, and the standard grading scale will be in effect:

- 90%+ = A- / A; 80-89% = B- / B+; 70-79% = C- / C+; 60-69% = D / D+; <60% = F

Grades in CHM 105 are earned by demonstrating mastery/proficiency in the required skills; these skills include not only the chemistry laboratory techniques, but also problem-solving, critical thinking, and the ability to apply course concepts within relevant laboratory scenarios.

To be clear: Each student’s grade is determined by the quality of that student’s performance on the CHM 105 work items (described in detail below). The grade is not open to negotiation, and it is not dictated by what’s needed to progress in the student’s chosen program of study. The grade must be earned by achieving proficiency in (and ideally – mastery of) the skills identified as essential to ongoing success in the student’s degree program.

Students should also be aware that the CHM 103 lecture and CHM 105 lab are separate courses. The lab is intended to complement the lecture by illustrating many of the lecture concepts; however, the timing of these concepts may or may not be synchronized with the lecture presentation. The lab also includes some additional concepts that are not taught in lecture.

IMPORTANT NOTE to those CHM 105 students currently enrolled in the CHM 103 lecture course:

If you DROP the CHM 103 lecture course, you MUST ALSO DROP the CHM 105 lab.

It is recognized that a number of students enrolled in the CHM 105 lab completed the CHM 103 lecture in a previous semester or previous academic year. For this reason, each of the experiments in the lab manual is written as a complete lesson, and supplemental materials – including video tutorials – are available at the Sakai course site. It’s intended that any student who does a thorough job studying the provided course materials, preparing for each experiment, practicing the required skills, and utilizing the Study Help Resources should be able to succeed in the course.

Laboratory Work Items:

1. **Pre-Lab Assignments and Pre-Lab Quizzes**

 Each laboratory experiment includes both a Pre-Lab Assignment and Pre-Lab Quiz, so students can demonstrate that they’ve thoroughly prepared for their experimental work.

 Information about the Pre-Lab Assignments and Pre-Lab Quizzes is provided in the “Remedies for Common Laboratory Ailments” discussion presented on pages 3 – 12 of the CHM 105 lab manual. Students must take responsibility for reviewing these materials, contacting their lab instructor with any questions, and taking the necessary steps to prepare.

 Any student who comes to lab and does NOT have the lab manual, the completed Pre-Lab Assignment, and the required personal protection items will NOT be permitted to conduct the experiment (and will thus receive a ZERO for that week’s experiment).

 Pre-Lab Quizzes will be given promptly at the start of each lab period, after attendance and drawer inventory. Students who arrive late (after the quiz has been completed) will receive a zero for that day’s quiz.

2. **Report Sheets**

 The Report Sheet is due at the NEXT lab meeting the student attends, and it must be submitted at the START of that lab session.

 An immediate late penalty of 10 points will be assessed for Report Sheets NOT submitted to the lab instructor at the START of the lab session. An additional 10 point late penalty is assessed EACH business day after the due date, so that Report Sheets which are a full week late are worth ZERO points.

 As described in the “Remedies” discussion, the Report Sheet MUST be written in blue or blank ink. Your lab instructor MUST look over your data/observations, and sign the Lab Notebook pages before you leave the lab.

3. **Lab Performance Assessment**

 During each experiment, the lab instructor will objectively assess each student’s performance in the lab, and assign 0 to 10 points for appropriate laboratory behavior and technique.

 Lab performance points are AWARDED for: demonstrating familiarity with the experimental procedure, demonstrating proper experimental technique, keeping personal lab bench and communal areas clean, properly (and carefully) disposing of waste, interacting appropriately with fellow students and the teaching assistant, and adhering to safety regulations.

 Performance points will be DEDUCTED for: unsafe experimental technique, leaving personal lab bench or communal work areas messy (chemical spills or equipment left out/in disarray), improper disposal of chemical waste, removal of safety glasses/goggles during an experiment, non-emergency cell phone use or disruptive behavior during the laboratory period.
4. Laboratory Final Exam

The Final Exam is mandatory, and it is comprehensive. A Lab Skills Summary will be provided at the Sakai course site to assist students in studying for the Final Exam. ALL 11 lab experiments are represented on the Final Exam; students who have missed several laboratory sessions may find themselves at a disadvantage in taking the Final Exam.

Laboratory Safety

NOTHING is more important than the personal safety of the occupants of the laboratory.

Thus any student who deliberately or carelessly disregards a written or oral safety instruction will be expelled from the laboratory and will receive a grade of zero for the experiment. A student who is expelled twice from the laboratory for safety violations will automatically receive a failing grade in the course.

Careless disregard of safety instruction includes (but is not limited to) the following:

1. Any student who improperly disposes of chemical waste (pours solutions into laboratory sinks, or places solid waste into a garbage can).
2. Any student who does NOT have the following personal protection items: safety glasses or goggles, lab coat (clothing which covers the arms to below the elbow and legs to below the knee), protective (nitrile) gloves (when required), shoes which fully enclose the foot (no open toe or heel) and socks.
3. Any student who has NOT completed the Pre-Lab Assignment or is NOT able to answer questions on the Pre-Lab Quiz (so as to demonstrate effective preparation for that day’s experiment).
4. Any student who uses a cell phone in lab without prior permission, or for reasons other than a laboratory emergency.

Students who forget to bring their personal protection items will face a costly penalty:

Students with inappropriate footwear can purchase protective booties (~$2.50). However, a replacement pair safety glasses or a lab coat must be purchased at full price (~$10 and ~$21, respectively). None of these items may be returned to the stockroom after they’ve been worn.

Department Safety Policies:

• Students must be wearing their personal protection gear (lab coat and safety glasses or goggles) BEFORE they enter a teaching laboratory. (Students are to put on nitrile gloves at the time they begin working the experiment.)
• No student is permitted to enter a chemistry lab room unless they’re wearing BOTH a lab coat and safety glasses or goggles. These items MUST be worn at all times while students are in a chemistry lab, and they can be removed only AFTER students have safely exited the lab room.
• Chemistry department personnel are prohibited from loaning safety glasses by State of Rhode Island health/hygiene regulations. Students who forget their safety glasses should NOT ask about loaner eyewear, and must purchase a replacement pair of safety glasses at full cost.

Laboratory Equipment Bills

Each lab student is responsible for the equipment provided in his/her assigned drawer. Because that drawer is shared with students in other sections, each student must carefully inventory the equipment in the drawer to verify that all items are present and in good working order. This inventory must be conducted at both the beginning and end of every lab period.

Students will be charged for any items that they break during their own lab section. Students will also be charged for any items reported missing or broken by the student who inventories that drawer at the beginning of the next lab section.

Students must take responsibility for checking the Chemistry Stockroom website to determine whether they have an outstanding lab equipment bill. A link to the Stockroom website is available from the CHM 105 Sakai course site.

The deadline to pay lab equipment bills at the Chemistry Stockroom is at the close of business at the end of Final Exam week. Any student who has an unpaid bill at the Chemistry Stockroom after that day will have a sanction (a hold) placed on their e-Campus account. This sanction may prevent students from registering for classes, obtaining a transcript, or obtaining a diploma.
<table>
<thead>
<tr>
<th>Date</th>
<th>Experiment</th>
<th>Date</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 1/23</td>
<td>Course Info, Check-in, Safety</td>
<td>M 3/13</td>
<td>Spring Break</td>
</tr>
<tr>
<td>T 1/24</td>
<td>Course Info, Check-in, Safety</td>
<td>T 3/14</td>
<td>Spring Break</td>
</tr>
<tr>
<td>W 1/25</td>
<td>Course Info, Check-in, Safety</td>
<td>W 3/15</td>
<td>Spring Break</td>
</tr>
<tr>
<td>Th 1/26</td>
<td>Course Info, Check-in, Safety</td>
<td>Th 3/16</td>
<td>Spring Break</td>
</tr>
<tr>
<td>F 1/27</td>
<td>Course Info, Check-in, Safety</td>
<td>F 3/17</td>
<td>Spring Break</td>
</tr>
<tr>
<td>M 1/30</td>
<td>Lab 1. Measurements</td>
<td>M 3/20</td>
<td>Lab 7. Stoichiometry</td>
</tr>
<tr>
<td>T 1/31</td>
<td>Lab 1. Measurements</td>
<td>T 3/21</td>
<td>Lab 7. Stoichiometry</td>
</tr>
<tr>
<td>W 2/1</td>
<td>Lab 1. Measurements</td>
<td>W 3/22</td>
<td>Lab 7. Stoichiometry</td>
</tr>
<tr>
<td>Th 2/2</td>
<td>Lab 1. Measurements</td>
<td>Th 3/23</td>
<td>Lab 7. Stoichiometry</td>
</tr>
<tr>
<td>F 2/3</td>
<td>Lab 1. Measurements</td>
<td>F 3/24</td>
<td>Lab 7. Stoichiometry</td>
</tr>
<tr>
<td>M 2/6</td>
<td>Lab 2. Density</td>
<td>M 3/27</td>
<td>Lab 8. Ideal Gas Law</td>
</tr>
<tr>
<td>T 2/7</td>
<td>Lab 2. Density</td>
<td>T 3/28</td>
<td>Lab 8. Ideal Gas Law</td>
</tr>
<tr>
<td>W 2/8</td>
<td>Lab 2. Density</td>
<td>W 3/29</td>
<td>Lab 8. Ideal Gas Law</td>
</tr>
<tr>
<td>Th 2/9</td>
<td>Lab 2. Density</td>
<td>Th 3/30</td>
<td>Lab 8. Ideal Gas Law</td>
</tr>
<tr>
<td>F 2/10</td>
<td>Lab 2. Density</td>
<td>F 3/31</td>
<td>Lab 8. Ideal Gas Law</td>
</tr>
<tr>
<td>M 2/13</td>
<td>Lab 3. Separation of a Mixture</td>
<td>M 4/3</td>
<td>Lab 9. Solubility and Solutions</td>
</tr>
<tr>
<td>Th 2/16</td>
<td>Lab 3. Separation of a Mixture</td>
<td>Th 4/6</td>
<td>Lab 9. Solubility and Solutions</td>
</tr>
<tr>
<td>F 2/17</td>
<td>Lab 3. Separation of a Mixture</td>
<td>F 4/7</td>
<td>Lab 9. Solubility and Solutions</td>
</tr>
<tr>
<td>M 2/20</td>
<td>Lab 4. Determining a Chemical Formula</td>
<td>M 4/10</td>
<td>Lab 10. Reaction Rates</td>
</tr>
<tr>
<td>Th 2/23</td>
<td>Lab 4. Determining a Chemical Formula</td>
<td>Th 4/13</td>
<td>Lab 10. Reaction Rates</td>
</tr>
<tr>
<td>T 2/28</td>
<td>Lab 5. Structure, Geometry, Polarity</td>
<td>T 4/18</td>
<td>Lab 11. Acids, Bases, Buffers</td>
</tr>
<tr>
<td>W 3/1</td>
<td>Lab 5. Structure, Geometry, Polarity</td>
<td>W 4/19</td>
<td>Lab 11. Acids, Bases, Buffers</td>
</tr>
<tr>
<td>Th 3/2</td>
<td>Lab 5. Structure, Geometry, Polarity</td>
<td>Th 4/20</td>
<td>Lab 11. Acids, Bases, Buffers</td>
</tr>
<tr>
<td>M 3/6</td>
<td>Lab 6. Six-Bottle Study</td>
<td>M 4/24</td>
<td>Lab 12 (Make-up). Titration of Vinegar</td>
</tr>
</tbody>
</table>

COMMON WRITTEN LAB FINAL EXAM (For ALL CHM 105 Sections): Date/Time/Location to be announced
Study Help Resources

• Chemistry Graduate Student Teaching Assistants in the Beaupre 115 Learning Center

The Beaupre Learning Center provides a study area for preparing for lab and working problems, and it’s fully staffed by the Chemistry Department’s Laboratory Teaching Assistants.

If you have a general question about lab, or need help with questions or calculations, you can see any one of the TAs (however, those TAs teaching the CHM 105, 102, or 114 Introductory or General Chemistry labs will be most familiar with the content of this course). A schedule of the Beaupre Learning Center office hours is available via a link in your CHM 105 Sakai site.

The Beaupre Learning Center is recommended as the #1 study help resource for questions about chemistry lab courses, as the TAs actually teach the CHM lab courses. They are FAR more familiar with the particular experiments and expectations for lab reports than are the tutors at the Academic Enhancement Center.

• Chemistry Tutors at the Academic Enhancement Center (AEC)

The AEC (www.uri.edu/aec) can help you keep up with class work and study course materials more effectively. Their staff of learning specialists and student tutors can help you identify a study approach, develop effective study strategies, understand course concepts, and practice skills productively. You can study at the AEC alone or in small groups.

The AEC’s tutoring service is designed to support the goals of in-class instruction and promote effective study techniques. The tutors are URI students who have been recommended by professors. They’re hired based on their level of success in the courses they tutor, their excellent study skills, and their ability to work well with other students. Tutors conduct one-on-one and small group sessions for students in a variety of courses. The tutoring service is available by appointment and on a drop-in basis (first come, first served) and is FREE.

The AEC is open Monday – Thursday from 11 AM until 8 pm, and on Fridays until 2 pm. All services are free, and the coffee is free as well! For the schedule, please see the AEC website, call (401) 874-2367, or stop by the 4th floor in Roosevelt Hall.

• Assistance from Dr. Brittain, during office hours or via email

Office Hours: Dr. Brittain’s class, meeting, and office hours schedule is available to you through URI’s Starfish Success Net. Students are welcome to schedule an appointment via Starfish, or simply walk in at a day/time when they can see Dr. Brittain is available.

As Dr. Brittain’s faculty office is accessed through the Beaupre 115 Learning Center, students who simply stop by the Learning Center can often get questions answered by a Teaching Assistant, or by one of the other chemistry lecturers (if Dr. Britain is unavailable).

Email: Please understand that because Dr. Brittain has responsibility for several different chemistry courses – all with high enrollments – she receives a substantial number of email messages each day. To ensure that your message will be answered, it’s recommended that you:

• Use a concise, yet descriptive subject line.

• Include your full name, chemistry lecture (or lab) course number, and section number in the message.

• Make sure the question asked or information conveyed in your message is both clear and complete.

Study Help Advice

Whether you’re seeking help from Dr. Brittain, a Chemistry Teaching Assistant, or AEC Tutor, you’ll want to arrive at your help session on time and fully prepared, to make the discussion as productive and efficient as possible.

This means you should bring all relevant study/reference materials with you to the session. This would include your CHM 105 lab manual, your data/observations from the lab experiment, your scientific calculator, and your written list of specific questions and/or your goals for the help session.
Academic Honesty

Although students are conducting each experiment in pairs, each student’s Pre-Lab Assignment, Pre-Lab Quiz, and Lab Report Sheet MUST be completed on an individual basis.

Students who submit work that is clearly the same as another student’s work are in violation of the University’s Policy on Academic Honesty. Those students will be held accountable as described in that Policy.

Academic dishonesty in any form is considered a serious offense, and disciplinary action will be taken immediately.

The URI policy on academic honesty is detailed in the student handbook (available online), and it is summarized below:

Students are expected to be honest in all academic work. A student’s name on ANY written work, including assignments, lab reports, papers, or exams, shall be regarded as assurance that the work is the result of the student’s own thought and study. Work should be stated in the student’s own words, properly attributed to its source. Students have an obligation to know how to quote, paraphrase, summarize, or reference the work of others with integrity.

When students are authorized to work jointly, group effort MUST be indicated on the work submitted.

The following are examples of academic dishonesty:

- Claiming disproportionate credit for work not done independently.
- Unauthorized use of another’s work or preparing work for another student.
- Unauthorized possession or access to exams.
- Unauthorized communication during exams.
- Taking an exam for another student.
- Altering or attempting to alter grades.
- The use of notes or electronic devices (such as calculators, computers, or cell phones) to gain an unauthorized advantage during exams.
- Fabricating or falsifying facts, data, or references.
- Facilitating or aiding another’s academic dishonesty.

When there is an allegation of academic dishonesty, the instructor may:

- Fail the student for the assignment, or recommend that the student fail the course.

Chemistry Department plagiarism policies specific to CHM 105:

No section of your Pre-Lab Assignment, Pre-Lab Quiz or Report Sheet can be identical (or nearly identical) to that of another student without attribution. If sections of Pre-Lab Assignments/Quizzes or Report Sheets are the same (or nearly the same) as another source (e.g., a student’s paper, a section of the lab handout or lecture textbook, an explanation from a TA, information posted on the internet), it will be regarded as plagiarism.

The consequence of a first instance of plagiarism is a grade of zero on that section of the graded paper. If there is a repeat instance of plagiarism, the penalty is a grade of zero on the entire Pre-Lab Assignment, Pre-Lab Quiz or Report Sheet.

A zero score due to a plagiarism incident will stand, and cannot be dropped as the lowest grade earned on a Lab Work Item.

Important Spring Semester Deadlines

- Last day of e-Campus open add period: Sunday, January 29th
- Last day of e-Campus add with permission number: Sunday, February 5th
- Last day for students to drop courses via e-Campus with no transcript designation: Monday, February 13th
- Last day for students to drop courses via e-Campus (with drop designated on transcript): Monday, March 6th
- Mid-term progress reports posted in e-Campus: Tuesday, March 21st