Introductory Chemistry --- CHM 103
Course Information and Syllabus
Spring Semester, 2017

Instructor

George W. Dombi, PhD
Email: gDombi@chm.uri.edu
Phone: (401) 874-2384
Office: 115 Beaupre Center
Office Hours: 12 noon – 2 pm Monday – Friday or by appointment.

Required Lecture Materials
1) Textbook: Introductory Chemistry for Today (Seager/Slabaugh, 8th edition)
2) OWLv2 on line web learning system; purchase with text book.
 Students of this course need key code: http://login.cengagebrain.com/course/EHY7WQY2L94GQX
3) Turning Technologies NXT clicker; purchase in Book Store (Rebate available for your clicker). Register your clicker ID in Sakai.
4) CHM 103 Skills Practice book purchase at the Ram Bookstore at Memorial Union along with the textbook.
5) Scientific calculator with log and exponent functions.
 Calculators will not be provided; student will NOT be allowed to share during exams.
6) Students are expected to print their own copies of course documents.

Class Meetings
Section 001: Monday, Wednesday and Friday, 9:00 – 9:50 AM 100 Beaupre Center
Section 002: Monday, Wednesday and Friday, 2:00 – 2:50 PM 100 Beaupre Center

Do not miss lecture. We use clickers during lecture to take attendance and answer class related questions. The points go towards homework. It is in your best interest to take notes during lecture. Taking notes will aid you in learning the material and doing well on the exams. Please take notes by hand during class and not by computer as I will post a copy of the slides later on Sakai and using the computer will distract you. Your behavior in the lecture hall says a lot about your dedication as a student. Please turn off all cell phones and audible beepers before entering the lecture hall. Please arrive on time and do not walk out early. Please refrain from random computer use and idle chatter in the classroom; it is discourteous and distracting to your classmates.
Course Learning Objectives

CHM 103 is a general education science course that serves students from many disciplines including: textile sciences, nursing, nutrition and dietetics, exercise science, kinesiology, physical education, and physical therapy. Students will have the opportunity to master introductory Chemistry principles. Lectures will provide insight into historical people and events related to chemistry. Lectures will also provide relevant examples of chemical principles in everyday life. The course is designed to advance students’ factual scientific knowledge and to also increase their thinking competency and computational skills identified as essential to success in their discipline. These skills include: obtaining and evaluating the data and information required to address a problem, identifying relevant approaches and recognizing an appropriate strategy, correctly implementing a problem-solving process, critically evaluating the outcome of that process, and clearly communicating the final result.

Topics include: matter and measurements; atomic structure; valence electrons and periodic law; inter-particle forces; states of matter; reactions and stoichiometry; solubility and solutions; reaction rates and equilibrium; acids, bases, and pH.

Learning outcomes for these topics are provided in the CHM 103 Skills Practice Book.

Hints for Success - PPP method (Prepare, Participate, Practice)

PREPARE: - Before class: Read the text material in preparation for the coming class as listed in the syllabus. Review previous class notes. Prepare a list of questions about unclear topics and bring to class. Watch the video(s), complete and submit the assigned Skill Check exercises daily. Skill Check is a tool in Sakai, which will probe your pre-lecture understanding of key concepts. These assignments will push you to think carefully about the new skills you will be learning in class that day. Skill Check problems consist of “pooled” questions – usually seven questions will be selected at random from a larger pool each time you open the Skill Check. After you’ve completed and received up to 7 points for a Skill Check, you can re-open it to answer a different set of questions, and “skill-drill” until you can answer each question correctly.

Completing Skill Check problems earns points towards your 600 Homework problems.

PARTICIPATE: - During class: Take notes, ask questions and respond to my questions. Feel free to ask any question about the subject even a “stupid” one. If you are unsure what to do or what was said, so are others. Ask the question if not for yourself then for your fellow students. NXT or QT clickers will be utilized in class as one of the forms of in-class response. Be sure to register your clicker, in the Turning Technologies section of the CHM 103 SAKAI homepage. You will earn 1 point for each correct clicker answer given in class. I will apply the clicker points to your 600 point homework account for work there.
PRACTICE: - After class: Reread your notes within 24 hours of the lecture and fill-in any blanks. Make a friend and check their notes to see if you missed anything. Look over the appropriate pages in the Skills Book and read them to fill-in any blanks. Write a question in the margin of your notes that will summarize each section. Answer these questions as you study the next day. Complete the OWLv2 electronic homework by Sunday at 11:55 pm. The OWLv2 system is designed to HELP STUDENTS LEARN. OWL assignments include recommended tutorials and problem sets. Try to learn as much as you can with the OWLv2 problems. Students will need to stay on track and on time with OWLv2 homework. Ample time is provided to complete each assignment. OWLv2 system is intended to be a key learning task in this course. Assignments may be worked in student study groups or with help from a tutor as an open book exercise.

OWLv2 problems represent the largest source of points for the required total of 600 homework points combined from all 3 sources. Students will be able to accrue points from Skill checks, clickers and OWLv2 for their homework accounts. The total of 600 homework points will be adjusted to equal 1 exam. Students who earn more than 600 total homework points will not receive extra credit. The wise student usually continues to practice some problems throughout the whole course.

On-Line Technology

SAKAI is the University of Rhode Island, campus-wide, class-room management tool. Nearly all classes at URI have a web site on Sakai as does CHM 103. Students should see a course tab for CHM 103 Introductory Chemistry Lecture when the main portal of Sakai https://sakai.uri.edu/portal is opened with your campus user-name and password. The CHM 103 website on Sakai will be the main communication tool for general class announcements generated by me. Grades will be kept on Sakai. Students can download old quizzes, and relevant videos Lessons section and do Skill Checks on Sakai.

Clickers are utilized in CHM 103. Students will have to register their NXT or QT clickers on Sakai using the ResponseCard tab, which is found under the Turning Technologies button on the left-hand edge of the website. Students should register their clicker using the 6 character clicker ID number, please note that 0 is a zero and not an O, otherwise a bad format error will ensue. The clicker will be used in CHM 103 class daily and during exams. You should bring it to all of our class meetings including exams.

OWLv2, On-line Web Learning, is a product of Cengage Company, who makes our text book. Homework assignments for CHM 103 will be completed in OWLv2. Students will need to register in OWL using the registration card that came inside the textbook. It is possible to purchase a card alone from the bookstore or on-line if you already have a text book. Students can get to the main portal of OWLv2 and choose my class CHM 103, Spring 2017 at: http://www.cengagenow.com
Cheating

All forms of academic dishonesty are violations of the University Honor Code and are strictly forbidden. You must NOT cheat during exams and Not even give the appearance of cheating. During an exam, I may ask a student to move to another seat. You should just move; someone else may be looking at your test answers. You must not change test answers for regrading. But you may ask me to check an exam if you think I have made an error it totaling the sums of the grade. A student who commits academic dishonesty will receive a failing letter grade for the exam and a possible failing grade for the course. Further sanctions may be imposed by the College Dean.

Grading Policy

Each student's lecture course grade will be assigned by me based on:

4 Cumulative Mid-Term Exams (14 % each) = 57 % (400 pts)
Homework (OWL+ Skill Checks and Clicker pts) = 15 % (100 pts)
1 Cumulative Final Exam (25 %) = 28 % (200 pts)

Total = 100 %. (700 pts)

Grading will be as follows:

at least 90% guarantees an A-, 93% for an A
at least 80% guarantees a B-, 83% for a B, 87% for a B+
at least 70% guarantees a C-, 73% for a C, 77% for a C+
at least 60% guarantees a D, (there is no D-), 67% for a D+
less than 60% guarantees an F.

There are NO extra credit assignments given, but there are more than 750 OWL problems from which to select. Students need to successfully complete 600 Homework points, which can be from a combination of OWLv2, Clicker and pre-class Skill check points. The Homework points will be divided by 6 to get the 100 Homework points mentioned above. If a student successfully completes more than 600 Homework points that is good, but it will still be limited to 100 maximum Homework points.

Students with valid permission: including a written document concerning a medical event or URI team or club related sports event or military leave, can apply to me to make up a missed Mid-term exam. In some valid permission cases, I may arrange for an alternate testing date or I may replace the missing grade with the average of your remaining 3 mid-terms. No student may just drop an exam and expect me to replace the grade by averaging without a valid permission. If a students misses two or more Mid-term exams, you will need to repeat the course. All students must take the Final Exam.
Alternate testing is available for students with a documented disability. These students should contact me as early as possible in the semester to make arrangements for reasonable accommodations, as indicated by the Disability Services for Students Office. All students can anticipate that their graded exam papers will be returned in class at least one full week after the exam date. In the interim, students should not inquire as to the status of their test papers. Exam scores will also be communicated to students at the earliest opportunity through the Sakai Gradebook.

Important Spring Semester Deadlines:

- Last day of eCampus open add period: Sunday, January 29th.
- Last day of eCampus add with permission number: Sunday, February 5th.
- Last day for students to drop courses via eCampus with no transcript designation: Monday, February, 13th.
- Last day for students to drop courses via eCampus (with drop designated on transcript): Monday, March 6th.
- Freshman mid-term grades due posted on eCampus: Tuesday, March 21st.

CHM 105 Lab is a separate course. CHM 105 lab grades will be determined by the lab instructor.
<table>
<thead>
<tr>
<th>Week #</th>
<th>MONDAY</th>
<th>WEDNESDAY</th>
<th>FRIDAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/23: General Info. Lesson 1 Ch 1: Matter Meas, Calculate. HW: 1.2, 1.4 and EOC 1.1</td>
<td>1/25: Lesson 2 Ch 1: Matter Meas, Calculate. HW: 1.6, 1.7 and EOC 1.2</td>
<td>1/27: Lesson 3 Ch 1: Matter Meas, Calculate HW: 1.8, 1.9, 1.11 and EOC 1.3</td>
</tr>
<tr>
<td>2</td>
<td>1/30: Lesson 4 Ch 1: Matter Meas, Calculate. HW: Mastery Chapter 1</td>
<td>2/01 Lesson 5 Ch 2: Atoms and Molecules. HW: 2.1, 2.2, 2.3 and EOC 2.1</td>
<td>2/03: Lesson 6 Ch 2: Atoms and Molecules. HW: 2.4, 2.5, 2.6, and EOC 2.2</td>
</tr>
<tr>
<td>3</td>
<td>2/06: Lesson 7 Ch 2: Atoms and Molecules. HW: 2.7 and Mastery Chapter 2</td>
<td>2/08: Lesson 8 Ch 3: Elect. Struct, Periodic Law. HW: 3.1, 3.2, 3.3 and EOC 3.1</td>
<td>2/10: Lesson 9 Ch 3: Elect. Struct, Periodic Law. HW: 3.4, 3.5, 3.6 and EOC 3.2</td>
</tr>
<tr>
<td>5</td>
<td>2/20: Lesson 13 No Classes –President’s Day HW: Finish what you got.</td>
<td>2/22: Lesson 14 Ch 4: Forces Between Particles. HW: 4.4, 4.5, 4.6, 4.8, EOC 4.2</td>
<td>2/24: Lesson 15 Ch 4: Forces Between Particles. HW: 4.9, 4.10, 4.11 and EOC 4.3</td>
</tr>
<tr>
<td>6</td>
<td>2/27: Lesson 16 Ch 4: Forces Between Particles. HW: Mastery Chapter 4</td>
<td>3/01: Lesson 17 Ch 5: Chemical Reactions. HW: 5.1, 5.3, 5.4 and EOC 5.1</td>
<td>3/03: Lesson 18 Ch 5: Chemical Reactions. HW: 5.5, 5.6, 5.7, 5.8, EOC 5.2</td>
</tr>
<tr>
<td>7</td>
<td>3/06: Lesson 19 (Last Day Drop) Ch 5: Chemical Reactions. HW: 5.9, 5.10, 5.11 and EOC 5.3</td>
<td>3/08: Lesson 20 Ch 5: Chemical Reactions. HW: Mastery Chapter 5</td>
<td>3/10: Lesson 21 EXAM 2 Chapters 4-5. HW:</td>
</tr>
<tr>
<td>11</td>
<td>4/03: Lesson 29 Ch 7: Solutions and Colloids. HW: 7.6, 7.7, 7.8 and EOC 7.3</td>
<td>4/05: Lesson 30 Ch 7: Solutions and Colloids. HW: Mastery Chapter 7</td>
<td>4/07: Lesson 31 EXAM 3 Chapters 6-7. HW:</td>
</tr>
<tr>
<td>12</td>
<td>4/10: Lesson 32 Ch 8: React Rates, Equilibrium. HW: 8.1, 8.2, 8.3, 8.4, EOC 8.1</td>
<td>4/12: Lesson 33 Ch 8: React Rates, Equilibrium. HW: 8.5, 8.6, 8.7, 8.8, EOC 8.2</td>
<td>4/14: Lesson 34 Ch 8: React Rates, Equilibrium. HW: Mastery Chapter 8</td>
</tr>
<tr>
<td>15</td>
<td>5/01: Lesson 41 Return exam 4, Review. HW: Finish whatever is left.</td>
<td>5/03: Reading day. HW: Finish whatever is left.</td>
<td>Final Exam: 100 Beaupre Section 001: May 8; 8-11 am, Section 002: May 5; 3-6 pm.</td>
</tr>
</tbody>
</table>